< Back to list

Planetary-Scale Terrain Composition

journalArticle

DOI:10.1109/TVCG.2009.43
Authors: Kooima R. / Leigh J. / Johnson A. / Roberts D. / SubbaRao M. / DeFanti T.A.

Extracted Abstract:

—Many interrelated planetary height map and surface image map data sets exist, and more data are collected each day. Broad communities of scientists require tools to compose these data interactively and explore them via real-time visualization. While related, these data sets are often unregistered with one another, having different projection, resolution, format, and type. We present a GPU-centric approach to the real-time composition and display of unregistered-but-related planetary-scale data. This approach employs a GPGPU process to tessellate spherical height fields. It uses a render-to-vertex-buffer technique to operate upon polygonal surface meshes in image space, allowing geometry processes to be expressed in terms of image processing. With height and surface map data processing unified in this fashion, a number of powerful composition operations may be uniformly applied to both. Examples include adaptation to nonuniform sampling due to projection, seamless blending of data of disparate resolution or transformation regardless of boundary, and the smooth interpolation of levels of detail in both geometry and imagery. Issues of scalability and precision are addressed, giving out-of-core access to giga-pixel data sources, and correct rendering at scales approaching one meter. Index Terms—Terrain visualization, GPU, GPGPU, render-to-vertex-buffer, level-of-detail. Ç 1

Level 1: Include/Exclude

  • Papers must discuss situated information visualization* (by Willet et al.) in the application domain of CH.
    *A situated data representation is a data representation whose physical presentation is located close to the data’s physical referent(s).
    *A situated visualization is a situated data representation for which the presentation is purely visual – and is typically displayed on a screen.
  • Representation must include abstract data (e.g., metadata).
  • Papers focused solely on digital reconstruction without information visualization aspects are excluded.
  • Posters and workshop papers are excluded to focus on mature research contributions.
Show all meta-data