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Abstract—Many interrelated planetary height map and surface image map data sets exist, and more data are collected each day.

Broad communities of scientists require tools to compose these data interactively and explore them via real-time visualization. While

related, these data sets are often unregistered with one another, having different projection, resolution, format, and type. We present a

GPU-centric approach to the real-time composition and display of unregistered-but-related planetary-scale data. This approach

employs a GPGPU process to tessellate spherical height fields. It uses a render-to-vertex-buffer technique to operate upon polygonal

surface meshes in image space, allowing geometry processes to be expressed in terms of image processing. With height and surface

map data processing unified in this fashion, a number of powerful composition operations may be uniformly applied to both. Examples

include adaptation to nonuniform sampling due to projection, seamless blending of data of disparate resolution or transformation

regardless of boundary, and the smooth interpolation of levels of detail in both geometry and imagery. Issues of scalability and

precision are addressed, giving out-of-core access to giga-pixel data sources, and correct rendering at scales approaching one meter.

Index Terms—Terrain visualization, GPU, GPGPU, render-to-vertex-buffer, level-of-detail.
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1 INTRODUCTION

THE field of real-time terrain rendering research is vibrant
and has been so for decades. Motivations dating back to

the birth of computer graphics focus on flight simulation as
the driving application for real-time algorithms, and since
then, interactive visualization has been embraced by broad
communities of scientists including geologists, seismolo-
gists, climatologists, and planetary scientists. Real-time
terrain visualization is a fundamental tool in the search
for oil on Earth, water on Mars, landing zones on the Moon,
and countless other areas of exploration.

A vast quantity of data exists describing the Earth and

other planets, with height maps encoding their terrain and

features, and surface maps encoding a variety of quantities

including color in many wavelengths. The presentation,

projection, resolution, and coverage of these data sets are

appropriate to their subject, and thus, are as varied as the

data they represent. But, all of the data relating to given

planet are related and there is a clear motivation to bring

these data together in a common visualization.
The challenge lies in merging them correctly and

efficiently. It does not suffice merely to draw one height field

after another. Depth buffering causes overlapping surfaces to
obscure one another in unpredictable ways. We must instead
compose height maps before the geometry is drawn.

Neither is it straightforward to merge surface maps atop
rendered height geometry, as these maps may be unregis-
tered with the height map underlying them, and each
application of additional textures incurs the expense of
rerendering of some or all geometry. There is, thus, a
motivation to decouple surface texture application from
geometry entirely.

Traditional approaches entail the merging of disparate
data sources in a preprocessing phase, which resolves any
mismatches in projection and resolution. However, we
cannot preprocess all source data to a single common
projection, as no single projection can optimally represent
all data at all points on the globe. Similarly, we cannot
preprocess all source data to a single resolution, as this
would require an expansion of global low-resolution data to
accommodate the inclusion of local high-resolution data. To
allow for both optimal projection and optimal resolution
globally, we must instead approach the composition of
terrain data in a real-time, interactive, view-adaptive
fashion. In so doing, we preserve the identity and quality
of the original data.

Given the capability of modern graphics processors to
both read from and write to 4-channel 32-bit IEEE floating-
point frame buffers, the practice of GPGPU programming
has emerged. This practice views the GPU not only as 3D
renderer but also as a parallel vector processor. Related
extensions to OpenGL have enabled the ability to apply a
buffer of color values in the context of a buffer of geometry
values, blurring the distinction between colors ðr; g; b; aÞ and
vectors ðx; y; z; wÞ.

These advances allow us to process vertices as pixels,
and thus, formulate geometry processes in terms of image
processing. A unification of terrain height map and surface
map processing follows from this. The alpha-compositing of
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imagery has been common throughout the history of real-
time 3D graphics, but with the distinction between
geometry and imagery blurred, the same compositing
capability becomes possible with geometry. We gain the
ability to manipulate and compose surface map data on the
fly and height map geometry as well.

Given this, we seek to create tools for highly scalable
planetary rendering and data composition using little-to-no
preprocessing. We require only that large data sets be tiled
and mipmapped, a capability provided by off-the-shelf
tools such as GlobalMapper [1].

1.1 Related Work

Real-time terrain rendering algorithms have evolved along
side 3D graphics hardware. Early approaches such as
Duchaineau et al.’s ROAM algorithm [10] and Lindstrom
et al.’s continuous level-of-detail method [18], [17], [19]
devoted significant CPU resources to selecting an optimal
set of triangles to represent a height field. Such approaches
reflected the limited geometry processing capacity of the 3D
rendering hardware of the day.

The arrival of powerful GPUs shifted the focus away from
CPU triangle processing and toward bulk GPU rendering of
large blocks of geometry. de Boer’s geomipmapping algo-
rithm [8] is a straightforward approach using a quad-tree of
geometry grids. Levenburg [16] provides a more powerful
mechanism, improving upon ROAM to produce cacheable
static binary trees of triangles. Pajarola and Gobbetti [24]
provide a detailed survey of similar work, up to and
including techniques for geometry block rendering.

As GPU flexibility increased, per-frame on-the-fly
manipulation of terrain data came to the fore. Schneider
and Westermann [28] exploit vertex shading to interpolate
between blocks of geometry, achieving continuous level-
of-detail. Losasso and Hoppe’s geometry clipmap ap-
proach [21] utilizes an innovative toroidal data update,
allowing concentric blocks of geometry to remain centered
upon the viewer.

The treatment of geometry as imagery appeared in the
work of Gu et al. [13], enabling arbitrary 3D meshes to be
operated upon by image processing algorithms, notably
image compression techniques. Dachsbacher and Stammin-
ger [7] would later apply this method to terrain maps,
giving an elegant method of producing view-adaptive
terrain geometry in a GPU-friendly fashion, and paving
the way for basic terrain composition in the form of
procedural detail generation.

As terrain scale increases, terrain data sets may no longer
be assumed flat. A number of high-efficiency planetary-
scale spherical terrain rendering approaches have been
proposed to address this. In particular, Clasen and Hege
adapt the geometry clipmap concept to the sphere [6] giving
an advanced GPU-centric technique.

Cignoni et al. present Planet-sized Batched Dynamic
Adaptive Meshes (P-BDAMs) [5], a technique for rendering
a hierarchy of right-triangulated irregular networks with
associated texture maps. This approach entails extensive
preprocessing of the terrain mesh and textures. In contrast,
we seek to move the triangulation process to the GPU,
working directly from the source height maps, with the
terrain mesh untouched by the CPU.

Most terrain visualization techniques are concerned
primarily with rendering terrain geometry efficiently, with
little attention paid to issues of flexible data visualization.
Döllner et al. address this gap [9]. They present a model for
large-scale texture paging and propose texture mapping as
a fundamental primitive in terrain visualization, giving a
number of unique surface data layering tools (“lens”
masking, animation, and topographic representation) de-
fined in terms of multipass texture application. Our work
further generalizes this type of real-time surface map
composition by extending the capability to the composition
of underlying height maps.

Bruneton and Neyret [4] touch upon height map
composition, providing an approach to the real-time
generation of both the geometry and appearance of terrain.
Beginning with an elevation map and a vector definition of
surface features, they use GPU fragment processing to
generate and cache the diffuse color of the landscape and
carve vector features such as lakes, rivers, and roads into
the elevation map itself. Our work is similar in spirit,
omitting the composition of vector data, but allowing the
composition of multiple elevation maps, and mapping each
onto a geometric structure more appropriate to the sphere.

GPU-based geometry processing is certainly not limited
to terrain rendering. Boubekeur and Schlick present a
generic technique for static [2] and later adaptive [3] mesh
refinement wherein a GPU vertex shader maps refined
triangular meshes onto coarse CPU-specified triangular
patches. Height field displacement mapping follows di-
rectly from this, but the application of this technique to
spherical terrains is limited. The arc length of a spherical
triangle’s edges varies with the size of the triangle, so
interpolation using barycentric coordinates results in in-
consistent refined edge lengths at large scales. This
limitation motives our use of an iterative midpoint
subdivision technique, which gives consistent edge lengths
at all scales.

1.2 This Discussion

Section 2 defines our method in detail, laying out the
process by which height map and surface map data are
displayed, and pointing out opportunities for on-the-fly
manipulation and composition. Section 3 describes ways of
exploiting these opportunities to height and surface data,
enabling automatic adaptation to nonuniform data sam-
pling, the seamless blending and overlay of unregistered
data, and straightforward application of out-of-core paging
and level-of-detail interpolation.

In an effort to make the discussion of the effects of our
method concrete and clear, this presentation consistently
employs the false data example planet shown in Fig. 1. All
of these figures were rendered using our implementation of
the approach. The false data exaggerate the issues of
sampling and scale that this work focuses upon. This
planet was generated using 3D simplex noise [25], giving a
magnified height field. As an entity independent of data
sampling, the simplex noise planet was “observed” using a
variety of projections and resolutions in order to model the
variance among data sets of real planets. A color map with a
high-contrast, low-resolution contour line was generated
from the sampled height maps and is drawn without linear
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filtering so that nonuniform data sampling is made
apparent in the shape of the rendered texels. The applica-
tion of this approach to real large-scale data is demon-
strated in the performance analysis in Section 4.

2 METHOD

The method proceeds in three phases, shown in Fig. 2: CPU
visibility and level-of-detail determination, GPU geometry
generation, and GPU rendering and illumination. The
visibility phase determines a coarse set of visible triangular
surface patches, the geometry generation phase refines
these to give a displaced terrain mesh, and the rendering
phase rasterizes the mesh and applies surface textures. This
two-step geometry refinement process is similar to the work
of Lindstrom et al. [18], [17], [19], though our refinement
process is offloaded to the GPU.

The three phases are distinguished from one another by
the explicit transfer of the output of one to the input of the
next. When rendering multiple planetary bodies, these
phases are interleaved, exploiting the parallelism of proces-
sing and data transfer.

2.1 Visibility and Granularity

The visibility and granularity phase is executed by the CPU.
The primary goal of this phase is to produce a coarse
triangulation of the visible portion of the sphere, refined to
give consistent level-of-detail. This subdivision is not the
final spherical tessellation, it is merely a gross determina-
tion of visibility and granularity. To produce a uniformly
triangulated sphere, we begin with the icosahedron and
proceed by recursive subdivision of its faces, as in Fig. 3.

The use of the icosahedron as base polyhedron is not
strictly necessary, but we select it for the uniformity of its
triangulation. A variety of polyhedral tessellations have

been used for planetary-scale rendering. For example, the
spherical-ROAM texture tiling method by Hwa et al. [14]
uses a cube, as cubic subdivision retains the right triangular
tessellation used by their 45-degree tile rotation.

Height map data will be used to displace our refined
geometry in subsequent rendering passes and these height
maps are expected to represent a variety of projections and
resolutions. We do not favor one projection over another,
so we resample all incoming data to the icosahedron, as it
is the geometric form that best minimizes geometry
tessellation artifacts.

Throughout the runtime, we maintain a frame-coherent
hierarchy giving the current faces of the icosahedral subdivi-
sion. This is a tree structure with a constant number of leaves.
The management of this tree proceeds similarly to the ROAM
algorithm. But while ROAM is concerned with the main-
tenance of a continuous triangulation free of T-intersections,
we are concerned only with a coarse triangulation. Thus, we
have the luxury of ignoring T-intersections until after
refinement (Section 2.3) and our hierarchy maintenance
algorithm is simplified accordingly.

As the view varies from frame to frame, those triangles
that move into the view frustum are added to the tree, and
those that move out of the view are pruned. We seek a set of
visible triangles numbering as near as possible to (though
not larger than) a constant nt and maintain this set with a
simple priority algorithm. Triangles are sorted by the solid
angle that each subtends from the current view. If the set of
triangles is too large, the smallest set of four sibling triangles
is collapsed. If the set of triangles is too small, the largest
triangle is subdivided. The result is a coarse set of
approximately nt visible triangles. These appear as in Fig. 6a.

Testing these triangles for visibility is more complex than
simply checking each against a view frustum, since the
surface of the planet within the triangle’s bounds is not
planar. Height data will be mapped within that area, and
we must determine whether the geometry of this terrain is
or is not visible. As shown in Fig. 4, the three sides of a
triangular area on a sphere are segments of geodesics, or
“great circles” cutting the sphere into equal halves. These
geodesics define three planes cutting through the center of
the sphere, forming a wedge-shaped volume. The terrain
within this volume has some minimum and maximum
altitude, which may be conservatively assumed to be the
minimum and maximum radii of the planet. The three
planes and two radii define a surface shell, a tight bound on
the terrain within the triangle. We may determine the
visibility of the terrain within the triangle by testing the
triangular bounding shell.

Having adapted our triangulation of the icosahedron to
the current view, the three vertices of each of the nt triangles
are stored in a trio of 3� nt textures, each of which is as
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Fig. 1. The 3D simplex noise planetary height map with normal and

diffuse color maps, used for subsequent figures.

Fig. 2. The three phases of the planet rendering pipeline.

Fig. 3. Recursive subdivision of the icosahedron gives a sphere of very

uniform triangulation.
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depicted in Fig. 5. One texture gives the eye-space vertex

position, another gives the eye-space vector normal to the
sphere, and the third gives the spherical coordinate (long-

itude and latitude). In the following GPU-based phase of

the process, these will be used to determine coordinates for
height map texture reference. Height values will be used to

displace the vertex position along the normal, giving eye-

space terrain geometry. The three vector values are

uploaded to GPU-local storage asynchronously using a
pixel buffer object. This is the initial point at which

geometry is represented as imagery and this representation

will persist throughout the rendering process.
This is also the first point at which issues of precision are

addressed. To accommodate meter scale data in a plane-

tary-scale context, the coarse triangulation is computed in

double precision floating point on the CPU and trans-

formed into eye space before being uploaded to the GPU.
Eye space is a coordinate system centered upon the viewer

rather than the planet. This allows the fine granularity of

small floating-point values to be useful near the viewer and
the coarse granularity of large values to be pushed off to the

distance. This necessitates the resubdivision of the sphere

each time the viewpoint moves, but the cost of it is
negligible in practice, as will be demonstrated in the

performance analysis in Section 4.
This use of CPU-based double precision and manipulation

of coordinate systems is common to a number of prior

approaches. Reddy et al.’s TerraVision II [26] and Lindstrom
et al.’s VGIS [17] position data within local coordinates,

manipulating the model-view matrix as each data subset is

rendered. Given our goal of compositing all geometry in a
common coordinate system before rendering, we do not have

the luxury of varying the transformation across multiple

geometry render passes, so the direct specification of eye-

space coordinates follows.

Cignoni et al.’s P-BDAM [5] uses eye-space coordinates

in a similar and especially elegant fashion. P-BDAM

specifies the internal vertices of each triangular geometry

patch in terms of barycentric coordinates, relative to the

three outer vertices, which are supplied as vertex shader

uniforms. Like our approach, this does still entail the

recomputation of each eye-space vertex position per frame.

While P-BDAM performs this task in the vertex shader, we

do in the fragment shader.

2.2 Geometry Generation

The goal of the geometry generation phase is to produce a

high-resolution triangular tessellation of the sphere, accu-

rately representing the terrain of the input height maps, with

consistent level of detail, as shown in Fig. 6b. In this process,

the coarse eye-space triangulation provided by the CPU is

further refined by the GPU using recursive subdivision.
A triangle subdivided to depth d has nvðdÞ vertices:

nvðdÞ ¼
ð2d þ 1Þð2d þ 2Þ

2
:

With the exception of the three initial vertices defining a

triangle ðvo; v1; v2Þ, every vertex vi is the combination of two

other vertices vj and vk. A breadth-first order enumeration of

the nv vertices has the property that i > j and i > k for any

such related vertices vi; vj, and vk. Fig. 7 depicts this

relationship graphically, with arrows indicating dependence.

2.2.1 The GPGPU Approach

The geometry subdivision phase is a GPGPU process that

“ping-pongs” a pair of nvðdÞ � nt render targets, processing

all triangular surface patches in parallel, and iteratively

computing one new level of subdivision with each step. See

Fig. 8. At each step s, a rectangle is drawn from ½nvðsÞ; 0� to

½nvðsþ 1Þ; nt�, triggering the fragment program for each

new vertex.
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Fig. 5. The geometry generation seed of nt triangles, each with three

vertices ½a; b; c�, encoded as a 3� nt RGB texture. There are three such:

position, normal, and spherical coordinates.

Fig. 6. A triangulation of the visible portion of the sphere, as produced by

the visibility and granularity phase (a) and refined by the geometry

generation phase (b). (a) Visibility output. (b) Geometry output.

Fig. 4. A triangular surface shell, a terrain bounding volume defined by

three planes and two radii.

Fig. 7. Subdivided vertex indexes and dependencies, depth d ¼ 2.
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A lookup table (Fig. 9) indicates which of the already-
computed vertices must be averaged to give the current
vertex. These are referenced from the “ping” texture and the
new vertex is written to the “pong.” The “ping” and “pong”
are logically swapped and the process repeats until the
configured depth is achieved, usually five or six steps
depending on desired performance/quality. This gives 561
or 2,145 generated vertices per triangle, respectively, far
more than is possible using current OpenGL geometry
shading capability.

In short, this is a recursive geometric process formulated as
an iterative image process. This perpetuates the treatment of
geometry as imagery, the concept at the core of this approach.
This subdivision is performed for each of the three attribute
buffers supplied by the CPU, resulting in fine-grained eye-
space positions, normals, and spherical coordinates.

2.2.2 Vertex Normal Computation

Like positions, vertex normals are stored in eye space. These
vectors are normal to the smooth sphere, so subdivision
may be performed using bisection. The vectors �nj and �nk are
the normals of the input vertices, and �ni is the resulting
subdivided normal:

�ni ¼
�nj þ �nk
k�nj þ �nkk

:

Here, a trick is introduced. The geometry render target
is a four-channel floating-point frame buffer and the as-
yet-unused 4th channel is used to hold the angle
separating the input normals. This will be used during
position computation.

w ¼ acosð�nj � �nkÞ:

2.2.3 Longitude and Latitude Computation

Under ideal circumstances, it would not be necessary to
compute the longitude and latitude of each vertex by
recursive subdivision. Normally, one would not even bother
to store these coordinates, preferring to simply compute
them from the vertex normal at render time. However, this is
imprecise and unstable. Generating spherical coordinates in

this fashion leads to significant quantization, resulting in

surface mapping errors on the order of hundreds of meters

on the scale of the Earth, with a total failure of interpolation

across the International Date Line.
The haversine geodesic midpoint method more reliably

subdivides the coordinates of the input vertices. This

method computes the midpoint of the shortest path between

two positions specified as longitude (�) and latitude (�). It

correctly handles longitudes outside of the range ½��;þ��
without wrapping and latitudes near the poles without loss

of longitude. ð�j; �jÞ and ð�k; �kÞ are the coordinates of the

input vertices, and ð�i; �iÞ is their computed midpoint. bx
and by are temporary variables:

bx ¼ cos �k � cosð�k � �jÞ;
by ¼ cos �k � sinð�k � �jÞ;

�i ¼ atan2
�
sin �j þ sin �k;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcos �j þ bxÞ2 þ b2

y

q �
;

�i ¼ �j þ atan2ðby; cos �j þ bxÞ:

2.2.4 Vertex Position Computation

Position subdivision is particularly picky, as it is especially

prone to numerical imprecision. The common process is to

scale the normal by the average of the input radii and offset

from the center of the planet (as we are working in eye-

space rather than object-space). Unfortunately, multiplica-

tion by a large radius value may consume more precision

than can be represented by a 32-bit float. Once again,

geometry on the scale of a meter becomes dominated by

numerical precision artifacts. We need a method that

linearizes at small scales and does not make explicit

reference to the radius of the planet.
See Fig. 10. We take the angle between the input normal

vectors (as found during normal computation) and com-

pute its tangent using a constant lookup table stored as a 1D

texture map. We compute x, half the distance between �pj
and �pk, and multiply it by the tangent giving y. From there,

we offset the midpoint of �pj and �pk along the current normal

�ni by the distance y.
As the input normals tend toward equality, the

computation of their angle reliably tends toward 0 degree

with little noise. Thus, the table lookup reliably tends

toward y ¼ 0, and the position offset reduces to the

midpoint of the input points. Each step preserves its

precision and the stability of the operation as a whole

actually increases as the scale decreases.
We now have everything we need to begin applying

height map data to the tessellated sphere.
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Fig. 8. The GPGPU geometry generation buffer. Each pixel gives a vertex

in the final tessellation. The 3� nt section 0 corresponds to Fig. 5.

Fig. 9. Vertex dependence index lookup table, encoding the relationship

depicted in Fig. 7. Vertex i depends upon vertices j and k.

Fig. 10. Computing precise position subdivision without reference to

radius. �pj and �pk are the input vertex positions, and �pi is the computed

midpoint.
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2.2.5 Vertex Displacement

The final geometry of the spherical terrain is computed using
a geometry accumulation buffer. As with the geometry
generation buffer, each pixel of the geometry accumulation
buffer corresponds to a vertex in the spherical tessellation.
When height map textures are blended with this buffer, these
vertices are displaced, giving the geometry of the terrain.

In this process, each height map data set is loaded and
bound as a texture. The position, normal, and spherical
coordinate buffers we have just computed are also bound as
textures. A rectangle is drawn to the geometry accumulation
buffer, and at each fragment, the spherical coordinate (or the
normal, for polar data) gives the texture coordinate used to
reference the height map value. The position is offset along
the normal by this value and blended with the output.

This accumulation allows a multitude of height maps to
be combined to form the final visible geometry. Regardless
of projection or resolution, each of these height maps is
resampled from its native image space to the 2D logical
space of the tessellation. Because of this resampling,
discontinuities due to projection, data boundary, and
disparities in resolution are eliminated. Texture magnifica-
tion filtering interpolates low-resolution data linearly and
minification filtering down-samples high-resolution data.

Geometry accumulation also affords an opportunity to
enhance low-resolution height maps with procedurally
generated detail, as demonstrated previously by Losasso
and Hoppe [21] and Dachsbacher and Stamminger [7].
While possibly not appropriate for scientific visualization,
procedural terrain displacement can add welcome detail to
landscapes in game and entertainment applications, at little
to no cost in data storage. To accomplish this, we need only
blend fractal or Perlin-style noise with the existing geometry
accumulation buffer using an appropriate fragment shader.

The per-frame resampling of height map data may
appear wasteful of GPU resources, but since it is expressed
in terms of common texture mapping operations, it is no
different than the per-frame resampling of texture data
applied to an ordinary 3D mesh. As such, the overhead of
data resampling is minimal, as demonstrated in the
performance analysis in Section 4.4.

Our approach to height map accumulation affords an
opportunity to satisfy the last criterion for continuity.
Lindstrom et al. [18] enumerate three aspects of continuity
of terrain level-of-detail under viewpoint motion. In sum-
mary, they are 1) geometry morphs between discrete levels of
detail instead of popping, 2) adjacent blocks of geometry align
without gaps, and 3) the number of triangles tessellating a
given area varies smoothly. In our method, 3) is satisfied
during the visibility and granularity phase (Section 2.1) and 2)
is satisfied during rasterization (Section 2.3), but 1) remains.

However, with our approach, height geometry displace-
ment is expressed in terms of image composition and
performed by pixel processing hardware. Thus, morphing
between geometric levels of detail is equivalent to blending
between images. Just as height map resampling is accom-
plished by the GPU’s bilinear texture filtering capability, so
too may level-of-detail continuity be satisfied using the
GPU’s trilinear mipmapping capability. The mipmap bias is
the fractional part of the level-of-detail coefficient, as used
in existing approaches to geomorphing [12]. At the time of
this writing, this advanced terrain sampling operation is
untested and our current implementation does reveal

popping artifacts. Recognizing the necessity of continuous
LOD in any modern approach to terrain rendering, we
place trilinear filtered geometry among our most important
areas for future work.

After all input height maps have been accumulated, the
final vertex attributes are concatenated to a vertex buffer
object for rasterization. Given the input shown in Fig. 6a,
the output shown in Fig. 6b is generated. Each vertex of the
tessellation has a position, normal, and longitude/latitude
texture coordinate.

2.2.6 Aliasing and Error

Our height map displacement process does not enforce a
constraint that the vertices of the source data fall upon the
vertices of our triangulation. The vast majority of sampled
height map values are the result of texture filtering, and thus,
a linear interpolation of the four surrounding values. This is a
significant departure from one of the basic assumptions made
in the field of terrain rendering. Filtered terrain texture
sampling is not unheard of and Livny et al.’s persistent grid
ray-casting approach [20] is one example, but most terrain
rendering approaches utilize a regular grid of data applied to
a regular geometric grid of right triangles. Our goal of
supporting arbitrarily projected data precludes this and the
impact is twofold. First, it allows aliasing to occur when data
are resampled to our triangular mesh. Second, it adds
complexity to the analysis and mitigation of error.

While existing planetary-scale terrain rendering litera-
ture does discuss the mapping of spherically projected data
onto subdivided polyhedra, little attention has been paid to
the effects of the nonuniformity of such mappings on
aliasing and error. We understand the critical necessity of a
thorough analysis of the error and failure modes that arise
here, but we leave this analysis for our future work.

2.3 Rendering and Illumination

The rendering phase begins by determining an appropriate
triangular winding of the vertices generated previously.
The neighborhood of each coarse triangle determines
whether a level-of-detail transition has occurred along its
border. Such a transition may result in adjacent lower
resolution geometry along zero, one, two, or three sides. An
element buffer object is selected accordingly from among
those shown in Fig. 11, producing a triangulation of the
surface free of T-intersections.

2.3.1 Deferred Texturing

This geometry is drawn to an offscreen four-channel floating-
point buffer with fragment color ð�; �; nx; nzÞ. That is, only the
values of the spherical coordinate and normal at each point
are drawn. This deferred texturing technique allows a large
number of surface map textures to be composed atop terrain
geometry without the need to make multiple geometry
rendering passes. This is a generalization of deferred shading,
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Fig. 11. Vertex windings needed to eliminate T-intersections, adjoining

high-granularity geometry with adjacent lower granularity geometry.
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a technique Saito and Takahashi developed and referred to as
“G-buffers” [27], where offscreen buffers receive the color
and normal of rendered geometry, allowing the contribution
of multiple light sources to be applied in screen space.

Rendering is OðnÞ in the number of vertices drawn. If
m surface maps are to be applied to this geometry, then
traditional multipass rendering is Oðn �mÞ. Deferred textur-
ing incurs the cost of geometry rendering at most once and
m surface maps may be applied in OðnþmÞ time. In the
analogous case, G-buffering allows m light sources to be
applied in OðnþmÞ time.

Fig. 12a shows the resulting texture coordinate buffer, with
longitude (�) in the red channel and latitude (�) in the green
channel. Note that this is the only time 3D geometry is drawn
and all subsequent rendering is performed in screen space.

2.3.2 Surface Map Accumulation

Just as height maps of arbitrary projection and type are
adaptively composed as images during geometry genera-
tion, so too are surface maps composed during rendering.
With height maps operated upon in the logical space of the
tessellation and surface maps operated upon in screen
space, we see that all data are processed in the space in
which they are used rather than the native space in which
they are presented.

During surface map accumulation, the bounding volume
of the surface data set is drawn. For each fragment, the texture
coordinate is retrieved from the deferred texture buffer, with
spherical data using ð�; �Þ and polar data using ðnx; nzÞ.
Additionally, the depth buffer value and projection inverse
may be used to compute the eye-space position ðpx; py; pzÞ of
each fragment, which gives means to find coordinates for
orthogonally projected or perspective projected surface data,
such as photographs. Finally, the surface data texture is
referenced. This is another opportunity to perform a data
manipulation, such as projection-quality adaptation, level-
of-detail blending, or procedural detail generation.

Each distinct type of surface map data is composed
separately to an offscreen buffer. Fig. 12b shows the
accumulated normal maps of our example planet. Fig. 12c
shows the accumulated diffuse color maps.

Finally, an onscreen pass is made in the form of a full-
screen rectangle. For each fragment, each of the accumu-
lated surface map buffers is referenced, combined as
needed, illuminated as desired, postprocessed, and dis-
played, as shown in Fig. 12d.

2.3.3 Texture Coordinate Buffer Precision

The maximum resolution of a surface texture map renderable
with this technique is limited by the precision of the 32-bit
IEEE floating-point values stored in the texture coordinate
buffer. A 32-bit float provides 24 bits of significand (23 bits
plus one implicit lead bit), so the smallest feature uniquely
representable using spherical coordinates at any point on a
sphere of radius r has size 2�r=224 meters. On a sphere the
size of the Earth, with mean radius 6,372,797 meters, this
works out to 2.39 meters. On the moon, with radius
1,738,400 meters, the value is 0.65 meters.

To make the effects of this imprecision apparent, a planet
the size of the Earth is rendered using a procedurally
generated texture. The texture coordinate ð�; �Þ is read from
the buffer, normalized to ½�1; 1�, scaled by a factor of
�1;001;036, and fed to a step function. This gives a black-
and-white checkerboard pattern, where each square has a
height of 10 meters on a sphere of radius 6,372,797. The
checkerboard width is 10 meters at the equator, narrowing
to zero at the poles.

Fig. 13 shows the resulting color buffer as it appears near
the international data line and the arctic circle. We can see
that the coordinates are usable at a scale of 10 meters, but
are largely noise at a scale of one meter. This is the worst-
case behavior, with the effect of the noise tending toward
zero near the equator and the prime meridian.

We may potentially work around this limitation using a
technique similar to that used during geometry generation.
There, geometry is generated in viewer-centric eye coordi-
nates to ensure that values remain near zero. Here, we find
the texture coordinate of the point on the sphere beneath the
viewer and generate texture coordinates offset from that. As
before, values near the viewer remain near zero.

Such offset spherical coordinates trigger a cascade of
complications throughout the rendering process. In particu-
lar, the calculation of the midpoint of two coordinates no

KOOIMA ET AL.: PLANETARY-SCALE TERRAIN COMPOSITION 725

Fig. 12. The accumulation buffers used during the screen-space

processing of surface maps. (a) Spherical coordinates, � in red, � in

green. (b) Normal accumulation. (c) Diffuse accumulation. (d) Final

image.

Fig. 13. A procedurally generated color map showing the scale and

character of the numerical imprecision of the texture coordinate buffer.

Squares are 10 m high, applied to a sphere the size of the Earth (mean

radius 6,372,797 m).
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longer follows from the formulation given in Section 2.2.3. We
have yet to derive a stable formulation of this part of the
process.

Offset coordinates also complicate the correct application
of surface textures. It does not suffice to merely apply the
texture coordinate offset of the viewer when making the
texture reference, as to do so would reintroduce a value far
from zero. Instead, the texture itself must be “virtually”
shifted. Efficient implementation of this follows from the
texture paging index mechanism, which will be described
in Section 3.3.

The ultimate solution is the use of double precision
floating point. High-end GPUs with double precision
capability from both NVIDIA and AMD are on the market
in 2008. Double precision emulation has been explored,
though the emulation of trigonometric functions is expen-
sive and involved.

3 REAL-TIME DATA MANIPULATION RESULTS

The true value of this approach to the display of height map
and surface map data is that it provides a number of
opportunities for on-the-fly data manipulation. Having
established that arbitrary juxtaposition, weighting, and
blending of both height and surface data are possible in
real time, a number of useful results follow immediately.
The following sections describe these. In all cases, the
displayed figures were rendered by the implementation of
our approach.

3.1 Projection Quality Adaptation

Planetary data are most often presented using spherically
projected images. The x-axis of the image maps directly onto
longitude and the y-axis maps directly onto latitude. Image
axes map onto the sphere as in Fig. 14a. The Shuttle Radar
Topography Mission (SRTM) [11] data set, a 1-arcsecond
height map of the Earth, is a common example of a spherical
data set. The Shuttle’s orbit limits the extent of this data set
to approximately 60 degree above and below the equator
and the spherical projection is optimal.

However, consider Blue Marble Next Generation (BMNG),
the familiar mosaic of color Earth imagery. It too is spherically
projected, but extends all the way to the poles. Spherical
projection suffers at the poles,where all lines of longitude, and
thus all columns of image data, converge. Pixels become
compressed along the x-axis, while retaining their size along
y. The visual effect of this is a radial blur centered at the pole.
This anisotropic sampling also imposes a significant data
access penalty, as large quantities of source data (the entire
width of the source image) must be accessed when rendering

the pole. This taxes VRAM utilization and may cause data
caches to thrash. Bad polar sampling is extremely common in
planetary data visualization.

The correct solution for polar rendering is to use polar-
projected source data, as in Fig. 14b, where the sampling of
the source most closely matches the sampling of the
rendered image. The Landsat Image Mosaic of Antarctica
(LIMA) is an example of a high-resolution data set
presented with polar projection. In particular, we work
closely with geoscientists at the Antarctic Geospatial
Information Center (AGIC) at the University of Minnesota.
This group has specific need for the means to interactively
compose large quantities of high-resolution localized data
near Earth’s south pole and to visualize these data in the
context of Earth as a whole.

To render an entire planet with uniform sampling, both
spherical and polar projections are required. Planetary
data sets providing both of these are rare, but the Mars
Orbiter Laser Altimeter (MOLA) data set is one example.
It provides spherical projection of Mars height data up to
88 degree from the equator, filling the gap at each pole
using data with polar projection.

Given both spherical and polar data, we can produce
uniform sampling planet-wide using terrain composition.
To make this process concrete, let us return to our example
planet. Fig. 15 shows the spherical projection of its surface
color map. While the examples here show only the color
map, the uniform handling of height and surface data
enabled by our method extends this discussion to terrain
geometry as well as any other surface mapped quantities,
including the normal maps used to produce these figures.

Fig. 16a shows the south pole. The small contoured
region there is stretched across the entire bottom of Fig. 15.
We see the extremely nonuniform sampling resulting from
the direct mapping of that image onto the sphere. Texels are
compressed longitudinally, but not latitudinally. Optimal
output texels should be square to properly represent the
square samples of the source data.

So, we introduce the polar projection of the surface color
map, as shown in Fig. 17. Fig. 16b shows this image mapped
onto the sphere. Contrast the uniformly shaped pixels of
Fig. 16b with the stretched pixels of Fig. 16a.

While polar data map cleanly at the pole, sampling
suffers elsewhere. Contrast the uniformity of the spherical
data near the equator, shown in Fig. 18a, with the nonuni-
form polar data at the same location in Fig. 18b.

To produce a uniform sampling across the entire planet,
we must blend the spherical, north polar, and south polar
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Fig. 14. Common planetary projection types. (a) Spherical projection.

(b) Polar projection.
Fig. 15. The spherical projection of the diffuse color of the example

planet. The marked region corresponds to Fig. 18.
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data sets. This blending follows immediately from the
accumulation mechanism described in Section 2.3.2. The
only open question is choosing the weights of that blend.
There are alternative approaches here.

The figures in this paper use an extremely straightfor-
ward approach: cubic interpolation over distance. Fig. 19
shows each of the three weighted terms separately, with
their composition shown on the right. In general, the
weights need not add up to one. While ðx; y; zÞ vectors or
ðr; g; bÞ color data are accumulated in the red, green, and
blue channels of the buffer, the weights are accumulated in
the alpha channel. The sum of the weights is then used to
normalize the RGB value upon final rendering.

The straightforward blending over distance in this exam-
ple depends upon the use of spherical and polar projection.
Arbitrary projections including orthogonal and perspective
projection may also be accommodated using a more powerful
weighting function based upon screen-space derivatives.

Let ðu; vÞ be the texture coordinate computed as a function

of the inputs ð�; �; �nx; �nzÞ taken from the deferred texture

buffer (Section 2.3.1). GLSL defines functions dFdx and dFdy

giving the derivative of any GLSL variable with respect to

the x- and y-axes of the target frame buffer, computed using

forward or backward differencing. The sampling uniformity

of a texel k may be computed as the ratio of the magnitudes

of the gradients along each texture axis:

k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dFdxðuÞ2 þ dFdyðuÞ2

dFdxðvÞ2 þ dFdyðvÞ2:

s

The following function computes a weighting value � in
½0; 1�, where texels mapping to squares in the output give 1
and texels mapping anisotropically to n� 1 or 1� n in the
output give 0:

� ¼ 1� log k

log n

����
����:

The n parameter is a configurable quality coefficient.
Setting n ¼ 2 gives an extremely aggressive isotropy bias
that allows only square pixels to make significant contribu-
tion to the accumulation. Depending on the degree of
source data overlap, this may or may not be desirable. It
will favor data viewed face-on and bias data mapped, for
example, to the side of a mountain. For this reason, a less
aggressive bias is usually preferable.

This weighting function is independent of the nature of
the projection, and thus, may be used to blend arbitrarily
projected data values on the basis of the quality of their
projection on a per-texel basis. Applied during the surface
accumulation phase (Section 2.3.2), it produces effects such
as that shown in Fig. 19 automatically.

Applied during the geometry displacement phase (Sec-
tion 2.2.5), it enables the adaptive composition of height
values, giving high-quality geometry planet-wide. How-
ever, a bit of extra work is required. As is apparent in the
vertex numbering, shown in Fig. 7, the layout of the
geometry image buffer is logical rather than spatial.
Neighboring vertices are not adjacent in this buffer. Because
of this, the GPU’s derivative functions (dFdx and dFdy) are
not valid. Texture coordinate derivatives must explicitly be
computed from the texture coordinates of logically adjacent
vertices. This may be done during geometry generation.

3.2 Data Overlay

Terrain visualization frequently requires the overlay of
unregistered height and surface maps of differing resolu-
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Fig. 16. The south pole of the example planet, showing (a) spherical and

(b) polar data mapped onto the sphere, contrasting the data sampling

uniformity of each.

Fig. 17. Polar projection of the diffuse color of the example planet. The

marked region corresponds to Fig. 16. (a) North. (b) South.

Fig. 18. A region near the equator, showing (a) spherical and (b) polar

data mapped onto the sphere, contrasting the data sampling uniformity

of each.

Fig. 19. The cubic-weighted contributions of spherical, north polar, and

south polar projected height and color data to the final planet.
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tion and boundary. For example, one might need to view a
high-res LIDAR height map of a fault in the context of the
terrain where it lies.

Our collaborators include astronomers at Chicago’s
Adler Planetarium. As the Public Outreach and Education
center for NASA’s Lunar Reconnaissance Orbiter Camera
mission (LROC), the Adler will receive 62TB of half-meter
lunar imagery, beginning with the launch of LRO in May
2009. Our goal is to bring these data to the public via real-
time 3D interactive experiences using the Adler’s “Moon
Wall” tiled display and 55-foot digital dome theater. To
create a unique public interaction with these data, Adler
astronomers wish to provide it as fresh as is possible. To
form a coherent whole, gaps in coverage must be sealed
with preexisting lunar data, such as the Clementine data set.

Data overlay is a multipass process. Height maps are
written to the geometry accumulation buffer and surface
maps are written to their accumulation buffers one by one.
With each pass, the incoming (source) data may be
composed with already-written (destination) data in a
number of ways. If data passes are sorted from the lowest
to the highest resolution, then the source may merely
replace the destination, and the result represents the best
available resolution at each point. Other applications may
require the minimum or maximum value, or a blending of
data sets based upon coverage, quality, or smoothing.

Detail data may be merged with base data by summing
the source with the destination. This provides a solution to
the specific problem of representing the geoid, the equipo-
tential surface of the Earth taking into account its deviation
from the sphere. As a specific example, NASA’s MOLA
data set optionally provides the Martian areoid in a height
map separate from the Martian landscape. The sum of these
gives the true radius of Mars at each point, correctly
representing the planet’s nonspherical shape.

As an example of localized data overlay, we have
generated a projection of our sample planet similar to raw
LROC output. The projection is an orthogonal strip scan
around the planet, as if following the ground trace of a
satellite in an inclined orbit. The color map appears in Fig. 20.
It is outlined in place in Fig. 21a.

Texture coordinates are derived from the eye-space
fragment position, with the inverse data projection applied.
Height and surface maps are blended normally, but care is
taken to clamp to the border of the overlaid input. Source
fragments falling outside of the image are either discarded
or masked away. Fig. 22a shows a close-up view of the
border of the overlaid strip. Contrast the sampling of the
contour line and note the discontinuity. If this abruptness is
undesirable, then a blend function may be produced
procedurally in the accumulation fragment shader, or
encoded in the alpha channel of the image, as shown in
Fig. 22b. This masking is fully generalized and overlaid data
need not have rectangular boundary.

This technique may be optimized by confining rendering
to the boundary of the overlaid data in the target buffer.

When accumulating surface maps, one need draw only the
screen-space shape filling the boundary. If this boundary is
complex or expensive to compute, a screen-space rectangle
or eye-space bounding volume will suffice. This results in
fewer fragment operations than a full-screen pass. Similarly,
when accumulating height maps, one need render only to
those scan lines encoding the surface patches touched by
the overlay.

3.3 Level-of-Detail and Paging

Planetary-scale data sets continue to grow in extent and
increase in resolution. Most data sets in use today far
exceed the size of the available RAM or video RAM of the
hardware used to display them.

To accommodate out-of-core data in real time, a caching
mechanism must be used. A data set is sliced into manage-
able pages and down-sampled to a mipmap pyramid. We
find a data tile size of 512� 512 (510� 510 plus a one pixel
border) to give the best trade-off between granularity and
throughput. The application uses the current view frustum
to determine which of these pages are visible and at what
resolution. Selected pages are uploaded to video memory for
rendering under a least recently used policy.

Our implementation uses a variant on the technique
developed by Lefohn et al. [15] to reference very high-
resolution shadow maps. In this approach, texture coordi-
nates do not map directly onto texels, instead they map onto
a mipmap index texture, which contains references into a tile
cache texture.

The cache texture behaves as a normal 2D image. It is an
n�m atlas of all currently loaded data pages. Given a page
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Fig. 20. A strip of local high-resolution data, as collected by a satellite in

an inclined orbit.

Fig. 21. A strip of local high-resolution data composed with global low-

resolution data. (a) With boundary indicated. (b) Composed normally.

Fig. 22. A close-up view of the border of the high-resolution strip of local

data. Pixel size indicates sampling and resolution. (a) Unblended.

(b) Blended.
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size p, its size is p � n� p �m. The maximum texture size of the
GPU places an upper bound on n and m. Current hardware
supports textures as large as 8,192 pixels square, and recent
hardware supports 4,096 pixels. In our case of p ¼ 512, we
select n ¼ 16 and m ¼ 8, for a total of 128 cache lines. The
parameters n and m serve to balance quality versus
performance, as needed. The true tile size p� 2 is selected
to be a power of two minus two in order to accommodate tile
packing within an atlas of maximum size, while allowing a
border for use in interpolation across tile boundaries.

The index texture behaves as a normal, unfiltered 2D
mipmap. Rather than giving colors ðr; g; bÞ, this texture gives
coordinates ðr; c; lÞ. These are the cache texture row r in ½0; nÞ
and column c in ½0;mÞ of the page of data for the given texture
coordinate, with the level-of-detail l of that page. The
l parameter is used to recognize the presence of a lower
resolution page to serve as proxy while the page of the desired
resolution is being loaded. This virtual texture lookup process
is performed by a GPU fragment shader, which may
implement any mipmap access policy. This shader uses its
knowledge of the cache size, page size, and border width to
perform linear filtering explicitly, as normal OpenGL
bordered texture sampling does not suffice in the context of
an atlas. The figures and performance measures shown in this
paper use a fragment shader implementation of trilinear
mipmapping, which produces an optimal sampling of
referenced data based upon texture coordinate derivatives.

The CPU maintains the state of both the index and cache
textures. Each data set in use is represented by a quad-tree
of page references. A rectangular data set will result in a full
quad-tree, but fullness is not necessary. The National
Elevation Database [29], which depicts U.S. territories all
over the world, is an example of a sparse quad-tree.

Each page of this quad-tree has a rectangular shell
bounding volume similar to that shown in Fig. 4. The solid
angle subtended by this shell at the current viewpoint,
combined with the resolution and solid angle of the display
itself, allows the ratio of texels per pixel to be computed for
each page. If this ratio meets a cutoff, then the correspond-
ing page is asynchronously uploaded to the cache texture
using a pixel buffer object. The page’s cache location is
uploaded to the index texture in both its correct position
and any applicable proxy positions.

When a data set is applied, it is rendered as a single
rectangle. During surface map rendering, a screen-sized
rectangle is drawn. In the case of height map accumulation,
the rendered rectangle covers the geometry accumulation
buffer as shown in Fig. 8.

We will see this mechanism in action in our perfor-
mance analysis, described in Section 4. There, it is used to
provide real-time access to 115 GB of height, color, and
normal map data.

4 PERFORMANCE MEASURES

In an effort to quantify the performance of our algorithm and
understand the variance in performance with different
quality settings, we define a benchmark. A scripted 4,800-
frame animation begins with a wide view of the Earth, moves
in to a close-up view of Mount Rainier, and then moves back
to the wide view along the same path. See Fig. 23. Each
execution of this benchmark begins with an empty data cache
and data are loaded as needed during the move in. On the

move out, much of the needed data remain in the cache. This
allows us to contrast the performance of the system under
both I/O intensive and nonintensive circumstances. All
frame time measurements are averaged over 10 frames,
giving 480 data points per run.

Our test configuration involves multiple gigapixel-scale
data sets, paged and cached as described in Section 3.3, using
a data overlay composition as described in Section 3.2. The
base layer is the SRTM [11] data set covering the Earth at a
resolution of 30 arcseconds, giving 3.5 gigapixels of 16-bit
height data. The National Elevation Database (NED) [29] is
overlaid atop this. NED covers all U.S. territory at a resolution
of one arcsecond, giving 17 gigapixels of 16-bit height data. A
24-bit normal map is derived from each of these, enabling
per-pixel illumination. Finally, the BMNG [22] data set
provides 24-bit RGB color covering the Earth at 30 arcse-
conds, for another 3.5 gigapixels. In total, this is 115 GB of raw
data. The data are preprocessed into 189,000 mipmapped,
bordered tiles, each 512 pixels square. These tiles are
compressed using PNG, consuming 38 GB of disk space.
Rendering uses an atmospheric illumination model by
O’Neil [23].

The character of the overlaid data is shown in Fig. 24. We
see the low-resolution SRTM height and normal maps
adjacent to the high-resolution NED height and normal
maps, with the BMNG color map applied to both.

4.1 Baseline Performance

The primary test hardware is a dual AMD Opteron 250 at
2.4 GHz with 4 GB of RAM and an NVIDIA GeForce
8800 GTX. The baseline run of this configuration has a
resolution of 1;024� 768, a refinement depth d ¼ 4, a triangle
seed count nt ¼ 256. Data caches allow for 128 pages of 16-bit
height data and 128 pages of 24-bit color and normal data.
Results are shown in Fig. 25.

As expected, we see many page faults on the move in
and only a few on the move out. There is a clear correlation
between frame time and page fault count, indicating the
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Fig. 23. Frames (a) 100, (b) 1,600, (c) 2,200, and (d) 2,400 of the 4,800-

frame benchmark animation.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:53:33 UTC from IEEE Xplore.  Restrictions apply. 



imperfect independence of the render thread from data
loader threads due to communication overhead. On the
move out, we see level performance around 6 ms per frame.
This demonstrates the algorithm’s consistent throughput
and performance independent of proximity to the data set.

Note that all graphs presented here use the same vertical
scaling, where the top of the graph represents a 30-Hz
refresh rate and the middle of the graph represents a 60-Hz
refresh rate. Fig. 25 shows performance comfortably better
than 60 Hz throughout the run.

4.2 Variance with Resolution

Now we vary the resolution of the display without varying
the complexity of the geometry. The results are shown in
Fig. 26. Decreasing the display resolution to 320� 240 (shown
in blue) greatly reduces both fragment processing overhead
and data demand. This reveals the combined overhead of the
visibility and granularity phase (Section 2.1) and geometry
generation phase (Section 2.2). We see performance level at
5 ms. This is the major fraction of the 6 ms performance at
1;024� 768 (again in black), but it is fortunately a constant
dependant only upon geometric complexity.

The primary impact of increasing the display resolution
to 1;920� 1;080 (Fig. 26 in red) is a higher demand for data.
In this case, we see rough performance on the move out due
to the reloading of low-resolution overview pages ejected
during the high-resolution Mount Rainier close-up.

We can still see a consistent minimum frame time of
around 10 ms in this circumstance, due to fragment
processing overhead. Given the assumption of 5 ms of
geometry overhead inferred from the 320� 240 results, we
see the increasing fragment cost match the geometry cost at
this resolution. As resolution increases from here, the
balance tends toward fragment processing.

4.3 Variance with Geometry

Now we vary the parameters that determine geometric
complexity while holding the display resolution constant at
1;024� 768. First, we double the number of seed triangles
from nt ¼ 256 to nt ¼ 512 while holding the refinement
depth d constant. This has the effect of doubling the number
of generated vertices from 39,168 to 78,336 (Section 2.1). We
see this doubling borne out in Fig. 27 with the frame time
graph translated upward.

Orthogonally to this, we increase the refinement depth
from d ¼ 4 to d ¼ 5 while holding the seed triangle count nt
constant. This has the effect of increasing the number of
generated vertices 3.6 times, from 39,168 to 143,616 (Sec-
tion 2.2). Again, we see the impact of this clearly in Fig. 28. If
we infer from Fig. 26 that 1 ms of the frame time may be
attributed to the overhead of rendering 1;024� 768 pixels,
then the remaining 17 ms of d ¼ 5 frame time is quite close to
3.6 times the 5 ms of d ¼ 4 frame time.

It is worth noting that an increase in d quickly increases
the vertex count, but does so without CPU cost. In contrast,
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Fig. 24. The resolution discontinuity between the SRTM and NED height

and normal maps, with the BMNG color map.

Fig. 25. Baseline performance at 1;024� 768 (d ¼ 4; nt ¼ 256) measured

over time. Frame time (ms) is shown in black and page fault count in

green. Marked frames (a), (b), (c), and (d) refer to Fig. 23.

Fig. 26. Frame time (ms) measured over time at 1;024� 768 in black,

320� 240 in blue, and 1;920� 1;080 in red.

Fig. 27. Frame time (ms) measured over time at 1;024� 768 with seed

triangle count nt ¼ 256 in black and nt ¼ 512 in orange.
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when doubling nt, we double the CPU’s geometry load in
addition to doubling the vertex count. This incurs twice the
visibility processing and twice the number of rendering
batches. In our tests, we find the CPU load of the rendering
thread to be negligible. However, one can imagine a
circumstance, where careful manipulation of nt and d may
tune the CPU-GPU balance and improve throughput.

4.4 Variance with Data

The data caching mechanism ensures that the total size of a
given data set does not impact general performance.
However, data layering does incur overdraw, so performance
does vary with the total number of data sets composed. To
quantify this, we run our benchmark without the NED data
set overlaid. This removes both the NED height map
contribution from the terrain geometry and the NED normal
map contribution from the normal buffer accumulation.

Fig. 26 showed that fragment processing is not a serious
bottleneck at 1;024� 768, so to see a distinction, we
perform this test at 1;920� 1;080. Fig. 29 shows this result
in cyan. As we would expect, the SRTM-only frame time is
reduced and performance is more consistent due to the
lower data demand.

To see the impact of height map overdraw, we apply the
NED height map atop the SRTM without the NED normal
map. This is shown in Fig. 29 in blue. While these results are
rougher due to data demand, the overall trend is not
significantly slower than the SRTM-only performance. This
indicates that the costs of height data resampling and
geometry displacement are negligible.

Finally, to see the impact of surface map overdraw, we
apply the NED normal map atop the SRTM without the
NED height map. We see an overall increase in frame time of
2 ms in green. Surface map overdraw incurs the rendering of
another rectangular screen-space bounding volume, and
surface map accumulation is handled in fragment shading.
Thus, the cost of applying further surface maps is linear in
the number of fragments in the screen-space bounding
volume of each.

In Fig. 29, the frame time shown in cyan is common to all
four measurements. The difference between the blue and
the cyan gives the cost of rendering the NED height map,
and the difference between the green and the cyan gives the
cost of rendering the NED normal map. The difference
between the red and the cyan gives the cost of rendering
both NED height and normal. We would expect this third

difference to reflect the sum of the two others and it does
not deviate far from the expectation.

4.5 Performance Qualities

These results reveal a balanced pipeline at our baseline
configuration. Frame time increases with either an increase in
geometry complexity or an increase in display resolution.
This balance is in contrast with many of the approaches to
terrain rendering presented in the literature. Triangle-
pinching CPU-based algorithms in the style of ROAM [10]
tend toward a geometric bottleneck, and well-batched GPU-
based algorithms such as geomipmapping [8] lead to a pixel
bottleneck. By offloading geometry processing to the GPU,
we provide a mechanism to distribute the terrain processing
cost more uniformly.

However, the situation becomes more complex when we
look to the practice of multi-GPU rendering. PC mother-
boards with multiple PCI Express slots accepting more than
one video board are common, as are single-slot video boards
with multiple GPUs. These configurations require special
attention, as independent GPUs have separate local VRAMs.
Intermediate results, such as our generated geometry buffers
and deferred shading buffers, may require synchronization.

We would be careless to overlook these issues, so Fig. 30
displays the results of early testing of our algorithm in a
multi-GPU environment. Our baseline GeForce 8800 GTX is
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Fig. 28. Frame time (ms) measured over time at 1;024� 768 with triangle

subdivision depth d ¼ 4 in black and d ¼ 5 in pink.

Fig. 29. Frame time (ms) measured over time at 1,920 � 1,080 with

SRTM only in cyan, SRTM+NED height in blue, and SRTM+NED normal

in green, with the baseline SRTM+NED height and normal in red (as in

Fig. 26).

Fig. 30. Multi-GPU performance comparison: single GPU shown in

black, multi-GPU in single mode in red, alternate-frame in green, split

frame in blue.
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shown in black, as above. Along side it, we see the
performance of an NVIDIA GeForce 9800 GX2, which
leaves a number of questions unanswered.

The performance of the 9800 with its multi-GPU
capability disabled is shown in red. Frame time is longer
by a consistent amount, indicating similar I/O response but
decreased rendering throughput. Green shows the 9800 in
alternate frame rendering (AFR) mode. In AFR mode, one
GPU renders odd-numbered frames, while the other
renders even-numbered frames. Despite the fact that our
algorithm introduces no interframe data dependencies, the
performance is radically altered. Blue shows the 9800 in
split frame rendering (SFR) mode. In SFR mode, one GPU
renders the top half of each frame, while the other renders
the bottom half. Due to the amount of intraframe data
dependency in our algorithm, we would expect this mode
to perform the worst, and it does.

However, both AFR and SRF modes suffer from patholo-
gically bad I/O response time. The results of the first half of
the benchmark are effectively unusable. Frame time even-
tually levels off at 23 ms per frame late in the non-I/O-
intensive second half of the benchmark. This performance
degradation could be explained by the synchronization
penalty, but we would expect this to begin around frame
2,500. Its slow crawl from 23 ms up to and beyond 30 ms
during this period remains unexplained.

In the context of standard forward rendering, the current
hardware industry trend toward multi-GPU configurations
is clearly beneficial. But given the tendency of modern GPU
algorithms to utilize render-to-texture and other data-
dependent techniques, the results shown here are troubling.
With a conflict between the functionality that the software
uses and the functionality that the hardware provides, an
important area for future work is revealed. Until such issues
are resolved, we must utilize the parallel rendering capability
of our implementation to treat multiple GPUs as wholly
separate renderers, each with an independent frame buffer.

5 CONCLUSIONS AND FUTURE WORK

In this paper, work we have demonstrated a mechanism for
the real-time manipulation and display of terrain height
and surface data. Beyond simply rendering terrain, this
mechanism affords opportunities to combine data in
powerful ways, bringing together disparate planetary-scale
data sets smoothly and efficiently, and adapting to produce
a uniform composite visualization of them.

Throughout our discussion, we have detailed a number
of areas where future work is required. In particular, we
must analyze the error and the effects of nonuniform
sampling of height data. In addition, while the generality of
terrain composition provides a path to an elegant imple-
mentation of geomorphing, we have yet to implement it.
Finally, the adaptation of our highly data-dependent
technique to multi-GPU environments will be increasingly
significant as this hardware trend continues.

Despite these remaining issues, the established ability to
perform arbitrary manipulation and blending of planetary
data has unlimited application. A number of further
composition operations have been proposed and remain
to be explored.

One potential composition involves color-space transfor-
mation. The Mars Reconnaissance Orbiter (MRO) HiRISE

camera provides extremely high-resolution imagery of
Mars, but not in full color. In contrast, the Viking Orbiter
image data set provides full color, but at low resolution. A
real-time composition may combine the low-res chroma of
Viking Orbiter with the high-res luminance of MRO, giving
high-resolution photo-realistic imagery of Mars.

Another potential composition addresses issues of data
layering. Data exist representing distinct surface layers and
subsurface geological structure, and users seek to visualize
these layers in the context of one another. Examples include
Antarctica, where both the surface of the ice and the surface of
the land are of interest. Arbitrary blending and masking of
data enables the overlay of these, affording a tool to peel away
layers of data along arbitrary user-selected boundaries.

Finally, the display of time-varying data stored as a
sequence of images is trivially expressed in terms of terrain
composition. Consecutive key frames may be smoothly
interpolated without the need to generate and store
intermediate frames. The resulting smoothed animation is
applicable to both height geometry and surface map data.

Our partnerships with the AGIC and the Adler Planetar-
ium will continue to drive the investigation into these types
of operations. Their access to new large-scale data sets will
raise new requirements, leading to as-yet-unforeseen for-
mulations of terrain composition.
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