< Back to list

Globe Browsing: Contextualized Spatio-Temporal Planetary Surface Visualization

journalArticle

DOI:10.1109/TVCG.2017.2743958
Authors: Bladin Karl / Axelsson Emil / Broberg Erik / Emmart Carter / Ljung Patric / Bock Alexander / Ynnerman Anders

Extracted Abstract:

—Results of planetary mapping are often shared openly for use in scientific research and mission planning. In its raw format, however, the data is not accessible to non-experts due to the difficulty in grasping the context and the intricate acquisition process. We present work on tailoring and integration of multiple data processing and visualization methods to interactively contextualize geospatial surface data of celestial bodies for use in science communication. As our approach handles dynamic data sources, streamed from online repositories, we are significantly shortening the time between discovery and dissemination of data and results. We describe the image acquisition pipeline, the pre-processing steps to derive a 2.5D terrain, and a chunked level-of-detail, out-of-core rendering approach to enable interactive exploration of global maps and high-resolution digital terrain models. The results are demonstrated for three different celestial bodies. The first case addresses high-resolution map data on the surface of Mars. A second case is showing dynamic processes, such as concurrent weather conditions on Earth that require temporal datasets. As a final example we use data from the New Horizons spacecraft which acquired images during a single flyby of Pluto. We visualize the acquisition process as well as the resulting surface data. Our work has been implemented in the OpenSpace software [8], which enables interactive presentations in a range of environments such as immersive dome theaters, interactive touch tables, and virtual reality headsets. Index Terms—Astronomical visualization, globe rendering, public dissemination, science communication, space mission visualization 1

Level 1: Include/Exclude

  • Papers must discuss situated information visualization* (by Willet et al.) in the application domain of CH.
    *A situated data representation is a data representation whose physical presentation is located close to the data’s physical referent(s).
    *A situated visualization is a situated data representation for which the presentation is purely visual – and is typically displayed on a screen.
  • Representation must include abstract data (e.g., metadata).
  • Papers focused solely on digital reconstruction without information visualization aspects are excluded.
  • Posters and workshop papers are excluded to focus on mature research contributions.
Show all meta-data