2021 16th International Workshop on Semantic and Social Media Adaptation & Personalization (SMAP) | 978-1-6654-4241-1/21/$31.00 ©2021 IEEE | DOI: 10.1109/SMAP53521.2021.9610777

A System for Collecting, Managing, Analyzing and
Sharing Diverse, Multi-faceted Cultural Heritage
and Tourism Data

Kimon Deligiannis*, Paraskevi Raftopoulou’, Christos Tryfonopoulos? and Costas Vassilakis®
Department of Informatics & Telecommunications,
University of the Peloponnese,
Tripolis, GR22100, Greece
Email: *deligiannis@uop.gr, Tpraftop@uop.gr, itrifon@uop.glr, §costas.@uop.glr

Abstract—Today, social media platforms and other online
sources, like forums and review sites, offer an abundance of
cultural and touristic information that is voluntarily offered by
travelers; this information, although helpful for other travelers,
is typically fragmented and thus cannot be easily leveraged to ex-
ploitable knowledge by scientists and other tourism stakeholders.
In this work, we present a novel, integrated system for collecting,
managing, analyzing and sharing diverse, multi-faceted cultural
heritage/tourism-related data that aims to assist scientists in the
cultural heritage domain and tourism stakeholders to gather
and synthesize scattered information to exploitable knowledge.
The proposed system is tailored to the tourism domain needs,
and allows users with minimum effort and zero IT expertise
to (i) gather data from both structured and unstructured/semi-
structured online sources, (ii) leverage the data to knowledge via
appropriate analysis and visualization tools, and (iii) share the
collected data and gathered knowledge with other stakeholders
via appropriate publish-subscribe mechanisms. The proposed
system is entirely open-source, designed upon big data tools and
principles for the data store, the analytics production, and the
knowledge sharing, and targets both performance and usability.

I. INTRODUCTION

In the Social Media (SM) and the Internet of Things (IoT)
era, the vast amounts of data that are produced every day and
the increasing number of people who register in SM platforms
turn out to be two interconnected notions [1], [2], [3], [4].
SM users are characterized as prosumers -i.e. producers and
consumers, since they not only benefit from utilizing the SM
services, but also produce and publish content themselves. This
content eventually becomes essential for economy sector appli-
cations and for other institutional operations in many scientific
domains [5]. In the same manner, SM users produce immense
amounts of information in the Cultural Heritage (CH) and
tourism domains by generating varying types of data, including
photos, videos, reviews or own stories, trajectories, geospatial
data, URLs linking items etc. A considerable amount of this
data are posted on social networks through the users’ IoT
devices, mainly smartphones; the information is either posted
on their own profile page or on the page of a cultural venue [6].
This aggregation of heterogeneous SM data flows composes

978-1-7281-5919-5/20/$31.00 ©2021 IEEE

an information waterfall that can be defined by the “3Vs”
[7] that represent the Volume, the Velocity and the Variety
of Big Data. Such an information plethora can be used in
various scientific and domain-specific applications in the CH
and tourism fields: scientists in the Cultural Informatics (CI)
and the tourism domains can capture, manage and analyze
this data, with the view to synthesize and exploit knowledge
of high importance, which can then be used to improve the
way visitors experience cultural venues (e.g. archaeological
sites, museums, galleries and other cultural foundations) [8],
[9], [10]. However, as the magnitude and the diversity of
information increases, many stakeholders associated with the
CI and tourism domains realize that the traditional information
management approaches are inadequate [11]. This does not
only stem from the 3Vs that characterize cultural data, but
also from the diversity in the needs of data consumers, with
each consumer category requiring a different viewpoint (or
facet) to the data collection.

This paper presents a novel, integrated system for collect-
ing, managing, analyzing and sharing diverse, multi-faceted
cultural heritage/tourism-related data. The proposed system
can gather data from both structured and unstructured/semi-
structured sources, and stores all data under a homogenized
scheme in a flexible, document-oriented store. Users may
access the data either on-request, through data analytics and
visualization services, or according to a publish-subscribe
scheme. The proposed system also includes functionality for
administrators to manage users and access rights to the con-
tent. The system is designed to require low or no IT expertise
for deploying, populating and managing data collections, fa-
cilitating and accelerating the relevant operations.

The rest of the paper is structured as follows: section
IT overviews related work on information systems providing
flexible document storage. Section III presents the proposed
system, while in section IV conclusions are drawn and future
work is outlined.

II. RELATED WORK

In recent years, with the emergence of big data, consid-
erable research efforts on information systems have been

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:13:53 UTC from IEEE Xplore. Restrictions apply.

conducted, aiming to improve and facilitate the harvesting,
storage, querying and analysis of vast quantities of structured,
semi-structured and unstructured information. However, the
idiosyncrasies and heterogeneity of data, technology evolu-
tion, scalability demand as well as evolving and fluid user
requirements necessitate pioneering and efficient scientific
approaches. In this section, we overview the related state-of-
the-art literature that offers solutions to the aforementioned
issues. This literature is classified into two parts; the first
part is related to the NoSQL (Not Only SQL) database sys-
tems philosophy, which is the new wave of high-performance
database systems, tailored to meet the expanding requirements
of modern big data applications. The second part focuses
on the most notable approaches in information systems that
employ the document-oriented NoSQL paradigm to realize the
data storage layer.

A. NoSQL database approaches

As the variety and the mass of data produced by web
applications, SM and the IoT grows every minute, the need
of novel database management techniques, that are able to
efficiently adapt and manage this data supporting the needs
of information systems rises too. The solutions presented in
[12], [13], [14], tackle this issue by putting aside the con-
ventional RDMS (Relational Database Management Systems)
SQL-based approaches and introducing the most widespread
NoSQL implementations. The NoSQL databases surveyed in
these works are classified in four main categories, namely
(1) Key-Value, (ii) Wide-Column, (iii) Document-oriented and
(iv) Graph-oriented databases), and each database class is
evaluated in terms of scalability, performance, consistency,
security, analytical capabilities and fault-tolerance, to con-
clude that each NoSQL database kind can handle different
operations better, whereas the database selection has to be
determined depending on the use case scenario and the or-
ganization/application needs. The authors in [15] state that
the column-based NoSQL DBMS are not able to support
online analysis operators (OLAP) and suggest a cube operator,
coined MC-CUBE (MapReduce Columnar CUBE), which
enables the construction of columnar NoSQL cubes once
collecting the data repositories. Two more column-oriented
NoSQL paradigms are presented in [16], [17]. The first work
proposes a method to put on conversion regulations in order
to migrate the SQL relational database content to a big
data column-based NoSQL database, while the second one
is associated with the comprehension, the arrangement, the
pros and cons of Clickhouse database and the way that this
column-oriented NoSQL database is able to replace Oracle
relational database when the workload augments. In [18], the
authors argue that database schemas need to be transformed
to meet ever-changing application needs. To tackle this issue,
they introduce a framework to detect alterations in a NoSQL
database schema and its data, supporting efficiently the con-
ceptual model evolution. The contribution in [19], examines
the way to implement a big data mart on a key-value based
NoSQL database, by applying a transformation procedure

from a multifaceted conceptual schema to a logical pattern,
employing three models that furnish key-value stores with an
SQL-like table structure overlay. In [20], the authors present
a data lake, designed to store multi-sourced structured and
unstructured data streams characterized by the 3Vs [7], that
is implemented utilizing the Hadoop Distributed File System
(HDFS) on the Hadoop Data Platform (HDP) and they apply
it on a car trading company use case scenario.

Regarding the management of geographical content derived
from the Web, which is a major application class involving
SM and IoT systems, the approaches in [21], [22] focus
on NoSQL DBMSs capable of storing and indexing spatio-
temporal and geospatial data respectively. The first solution,
named TrajMesa, is a route storage system which is founded
on GeoMesa and embraces an innovative warehousing mecha-
nism that minimizes the storage volume and is able to support
queries adeptly, while GeoYCSB constitutes a benchmarking
framework designed to measure the performance and scalabil-
ity between NoSQL databases, capable to manage geospatial
volumes of work.

The necessity of decision-making and knowledge extraction
derived from data generated from social networking platforms,
that leads to Extract-Transform-Load (ETL) big data proce-
dures development is discussed in [23]. The presented solu-
tion, coined BigDimETL (Big Dimensional ETL), has been
assembled by exploiting MapReduce and Hbase technologies
and is closely aligned with ETL methods adaptation. A promi-
nent work concerning document-oriented NoSQL databases
is presented in [24]. In this work, the authors, propose a
database schema recommendation model at the primary system
evolution phase, according to the use case scenario require-
ments and CRUD functionalities, that is capable to assist
developers in the context of a time consuming process, such
as designing a NoSQL database. Finally, [25] asserts that
the implementation of composite queries on multiform data
stores is very challenging; to this end, the authors introduce
an intermediate VDS (Virtual Data Store) module, able to
efficiently perform complex queries on several heterogeneous
data stores in Cloud environments.

B. NoSQL information systems

Big data analytics have emerged as a significant research do-
main that necessitates a number of requirements from the data
storage layer, including performance, scalability, flexibility and
manageability. The need for scalable applications, capable to
support heavy workloads and retrieve data effectively has led
many systems to adopt document-based NoSQL databases
[26]. This section presents the state-of-the-art approaches that
make use of the NoSQL paradigm to realize the data storage
layer.

In the approaches cited in [27], [28], the authors focus
on knowledge representation through ontologies, a modeling
tool that is frequently used in the data integration research
domain. To this end, they follow a three-stages procedure by
stockpiling and homogenizing the data to a NoSQL database,
spawning local ontologies and finally, arranging the local

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:13:53 UTC from IEEE Xplore. Restrictions apply.

ontologies to produce a more generic one. In [29], a novel
method combining both a routing meta-model and a number of
innovative algebraic structures to provide a real-time analysis
of traffic jams in urban environments is demonstrated. The
approach takes advantage of space-time path data collected
using cloud computing and IoT technologies, while data
storage and management is achieved using a NoSQL database
and in Hadoop ecosystem respectively. The authors in [30]
introduce a Mongoose mediation module which is able to
model and manage real-time temporal data, obtained from
ANT+ sensors, as hierarchical MongoDB documents in a
Node.js environment. [31] present a framework aiming to
support and facilitate the analysis of semi-structured applica-
tion data stored in a NoSQL database, while delivering high
performance; the framework is applied in a cluster monitoring
and prediction use case. In a similar spirit, MyStore [32]
is an efficient, user-friendly and always-available dispersed
storage framework for handling large amounts of unstructured
data using NoSQL. CryptMDB [33], constitutes a cumulative
homomorphic asymmetric cryptosystem capable to encipher
users’ data maintained in a NoSQL database. The approach
in [34], puts forward a user-friendly tool performing model
transmutation from relational databases to NoSQL for auto-
matic data migrations.

The work in [3] demonstrates a data lake employing NoSQL
with a view to store, manage and bridge vast and diverse
data sets embracing heterogeneous information from multiple
SM sources. This approach is the most theoretically and
operationally similar work to the one presented in this paper;
however, the SM data extraction in this work is achieved
by retrieving information from the API directly or by using
third party applications in order to interact with the related
SM’s API, while data acquisition in our work is realized by
initiating properly adapted SM crawlers that are specifically
developed for this purpose; furthermore, the work in [3] was
designed for the needs of a specific project and applied to
a particular research study, while our work is an online, free,
zero-administration data lake that offers both fundamental and
advanced user and data/knowledge management functionality
in the CH and the tourism domains, able to be customized for
the requirements of any CH or tourism-related project, and ad-
dresses all users, without requiring any IT background/skills.

Large volumes of data can be also found in the e-learning
domain, especially in the pandemic era where students partic-
ipate in their courses remotely, producing thus a bigger digital
footprint. The e-learning infrastructure cited in [35], adopts
a hybrid database architecture encapsulating both RDBMS
for managing structured data and a NoSQL database for
manipulating unstructured data, while SCeLE [36] has been
restructured to use MongoDB (a NoSQL implementation)
instead of MySQL, to prove much faster.

The necessity of big data technologies has emerged in
the research field of EHR (Electronic Health Records) too.
The work in [37], introduces a searchable privacy-preserving
enciphering mechanism for encrypted personal health records
stored in MongoDB, while the article in [38], proposes a

system to manage the intensive analytic workloads by realizing
them in a NoSQL data store, where possible, while code in the
R language is used to perform any procedural computations.
Finally, the authors in [39], present an AQL (Archetype Query
Language) interpreter operating on top of the MongoDB
NoSQL query language, to efficiently perform storage and
retrieval operations in EHRs.

To the best of our knowledge, the present work constitutes
the first system that supports the collection, management,
analysis, and sharing diverse, multi-faceted data in the CH and
tourism domains, allowing users without an IT background to
deploy, populate, and manage their own data ponds within
minutes, alleviating the need to rely on expensive custom-
made solutions that require IT infrastructure and skills to
maintain.

III. SYSTEM ARCHITECTURE

Inspired from our previous work [40] and taking into
account the experience drawn from the literature surveyed
in the previous section, we reconstructed the Hydria data
lake [40] applying cutting-edge NoSQL technologies, in order
to enhance the system’s performance and scalability. In this
chapter, we mainly emphasize on the Data Storage and Man-
agement unit, while we briefly outline the other components of
the Hydria data lake system. Broadly, the proposed data lake
has the ability to (i) gather/import structured, semi-structured
and unstructured data out of varying digital sources, (ii) pile
up user-generated survey records through appropriately crafted
questionnaires, (iii) maintain, handle and arrange the captured
data in separate data ponds (tailored data collections used
to conceptually group data within an individual Cl/tourism
application), (iv) distribute entire data collections or data
collection portions to other users bearing similar interests
through a robust Pub/Sub sharing tool, (v) explore, filter and
examine stored data employing a powerful, yet easy-to-use
data visualization widget, which executes dynamic queries
in the background, with a view to present various graphical
representations of information, and (vi) administer system
users, defining and fine-tuning access rights on the data. Figure
1 depicts a high-level perspective of the system’s architecture,
the infrastructure’s distinct operational tiers, their functionality
and their arrangement and interoperation within the data lake
framework.

A. Data Storage and Management trier

The Data Storage and Management (DSM) unit is respon-
sible for manipulating the data collected and/or created by the
Data Harvesting module and the Input Collection Manager
respectively, and maintaining them in data ponds. The DSM
unit additionally supports agile and versatile methods for
designing, managing and broadening a data pond (or a data
pond template). In the system’s core lies MongoDB database,
which underpins the construction, modification, arrangement
and administration functionalities of each data pond, while it
also undertakes the four basic CRUD (Create, Read, Update,
and Delete) operations on persistent storage, i.e., it manages

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:13:53 UTC from IEEE Xplore. Restrictions apply.

i Semi-structured/Unstructured Data To
2 — gz E get
05 225 g
8 §55 g3g
‘E R 2 . G
R R T ZE R L R PR e PP TPITU TSP PPpPY: et
: g Data Gathering Framework Input Collection Manager

ic Web Scraping

] Data Pond Formation / Modification

% Web-page Javascript Handling

12 Data Pond Template Management

T Domain Specific Focused Crawling

13 Storage Data Pond Record Collection

i< Data Parsing

-8 Dataset Importation / Exportation L
i Feature Extraction A
0 I R
o J— |
e A
= v
i E
10 BSON BSON BSON L
£ Collection 1 Collection 2. Collection N

HCS p N F
] — Doci Doct Doct R
18 —— A
= Dog2 Doc2 Doc2 M
= E
‘o MongoDB | L !

1y . % % w
i@ N) i 3 . o
-] S DocN DocN DocN R
2 e o e K
s e i

T @

0

T B R L R TR X R X T AL EEIRR
)

- o

i User Management

o 5O Data Analytics & Visualization Publish / Subscribe

E2 rvice Collaboration Manage!

:=F|| Admission Control Service oSy

-0

3 J

Fig. 1. System architecture separated in four layers (starting from the upper to
the lower level): i) the internet layer illustrates the heterogeneous data sources
on the web, ii) the second layer depicts the data harvesting mechanisms, iii)
the data storage and management layer constitutes the system’s back-end and
iv) the UI level presents the various services offered to system users.

the stockpiled data associated with a specific data pond at the
physical level.

According to the MongoDB terminology [41], a MongoDB
database constitutes a physical repository for collections. A
collection is an equivalent notion to a table in an RDBMS;
a Collection represents a set of Documents following the
BSON syntax, which is similar to the JSON syntax, although
BSON is an extended version of JSON format implemented by
MongoDB. A MongoDB Document can be considered as the
counterpart of a tuple (or row) in an RDBMS. Additionally,
a Document comprises a set of fields, where each field
is a name/value pair, similar to the concept of column of
an RDBMS. With respect to document indexing, MongoDB
spontaneously indexes all documents based on the _id key.
The _id key ensures a unique identification of each document
in a specific collection and can be correlated to the Primary
Key concept of an RDBMS. Moreover, MongoDB can create
indexes on embedded documents, or even create composite
indexes combining two or more keys to compose a particular
index. Taking advantage of embedded documents and linking,
MongoDB can easily relate records avoiding table joinning
operations employed in SQL philosophy, allowing thus for
considerable performance improvements, since table joining is
a costly operation. Finally, MongoDB provides the aggregation
pipeline framework, where several processing stages are orga-
nized into a pipeline, to efficiently compute the desired out-
come. This aggregation framework uses the MapReduce robust
mechanism in the background of MongoDB; the aggregation
pipeline framework bears analogies to the aggregate functions
(e.g., count(), sum(), etc.) supported by SQL in RDBMSs,
where the values of multiple rows are grouped together as
input on certain criteria to produce the requested result. Table
I summarizes the aforementioned MongoDB terms, correlating

TABLE I
MONGODB CONCEPTS CORRELATED WITH THE CORRESPONDING
RDBMS CONCEPTS.

MongoDB Terms

RDBMS Terms

Database Database
Collection Table
BSON document Row (or tuple)
Field Column
Index Index

Embedded documents and linking

Table joins

_1id field

Primary key

Aggregation pipeline framework

Aggregation (e.g., Group By)

them to the respective terms in RDBMS terminology.

1) Data pond management: The proposed system offers
various services assisting its users with straightforward, intu-
itive point-and-click methods to create and edit the desired
data ponds. The creation process comprises determining a
unique title and providing a description for the new data pond;
subsequently, the data pond is stored into the system catalog
for datastores_index collection; thereupon, the user is
able to edit the newly created data pond defining several data
fields by specifying a textual passage as the field name, and
one of the available data types as the field type. Field types,
besides being used for data type checking, are also utilized in
the questionnaire construction process, where data is directly
sourced from users via dynamically constructed forms. Every
constructed type-independent data field of every data pond
is deposited in the datastore_fields collection, which
effectively realizes a system dictionary for data fields. For
example, as we can observe in figure 2, the document on
the left outlines a simple text type field containing just the
field’s textual description (field_name), its answering type
(field_type) and some meta-data elements (such as the
field’s unique id, its order in the data pond and its creation and
modification timestamps). The definition of multiple choice-
type fields requires that the above-presented field specifi-
cation document is complemented with an additional field
(mc_values), which holds an array of acceptable values
that can be used for this particular multiple choice field.
Complex data type fields can be also be defined, consisting of
equivalent content with the documents already stated, however,
it additionally accomodates the number of times that this com-
plex data type field will occur (row_num) in the data pond
and an embedded document (sub_fields_mc_values),
which, in turn, encapsulates two arrays of multiple choice
response values and the number (starting from zero) of the
respective sub-field name that the array belongs to. Complex
data fields are described in detail in subsection III-A2. All
three document types are stored in the system dictionary
for data fields (i.e. the datastore_fields collection).
In figure 2, we can observe that documents on the left and
on the right share the same datastore_id value, which
means that both documents appear in the same data pond. It
is worth mentioning that based on the selected answering data

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:13:53 UTC from IEEE Xplore. Restrictions apply.

" {
"Sod"; "51a2bAf67d366467d43912d"

{
“id": {

“Soid": "5fa15ce67di366467d430127"
i

datastore_fields collection

1
“updated_at" "2020-11-04T14:16:30.0007),
“created_af": {'Sdate "2020-11-04T14:16:30.000Z')

Fig. 2. Example of BSON documents representing three data pond fields. The
document on the left denotes a field of a text-type answer, the document in the
middle shows a multiple choice-type field, while the document on the right
defines a complex type response field. All three documents are of different
structure and contain dissimilar content, however all of them are stored within
the datastore_fields collection.

type, hidden panels or dialogs occur prompting the user to
enter proper material for the particular element (e.g., if the
chosen answering data type is of multiple choice category,
the user has to be presented with a list of appropriate values
or has to pick one of the available lists already stored in the
multiple_choice_1lists collection). The available data
types that are currently supported by the proposed solution are
as follows: title (non-fillable field acting as a label to separate
data pond field sections), text, integer, decimal, date, multiple
choice, picture drawing, image file, and complex data types.

2) Complex data types: Complex data types are composite
and advanced data types that are made available to empower
the data pond design process, providing a methodical and
effective way of modeling groups of fields that occur more
than once within a data pond record, among separate records
of the same data pond, or even within records of distinct
data ponds. The document on the right side of figure 2
illustrates an example of a complex data type field, as stored
in the MongoDB database collection. The composite data type
defined in this example models the museum experience of
a group of four people (e.g., a family of four), comprising
four sub-fields (sub_field_names) of different data types
(sub_field_types). These sub-fields appear four times
and each of these appearances corresponds to an individual
occurrence of the field group; therefore, the four occurrences
allow for the accommodation of four distinct replies in a
questionnaire. A user may append a complex data type field on
a data pond, providing the specification of a recurring element
containing multiple fields. It should be pointed out that a
complex data type definition may be restructured at a later
time by editing, deleting and/or rearranging any individual
sub-field via an appropriate pop-up wizard; any modifications
on a complex data type are reflected within the relative data
pond. The creation and usage of complex data types offer:
(1) higher versatility in the formulation process of a data
pond, (ii) enhanced modeling of the input data, facilitating
information acquisition, storage and management and thus,
(iii) more eloquent and semantically richer query possibilities.

3) Reusing and sharing data shards: To guarantee informa-
tion consistency across data ponds, and improve data integrity

and validation of input, the proposed system provides users
with the ability to:

1) compose and share data pond templates by promoting
the reuse of all or collections of data pond fields (e.g.,
a survey of demographic information) among several
data ponds. To advocate template usage, an integrated
mechanism prompts users to consider using any of the
already stored templates once she edits a new data pond
for the first time. Constructing and editing a template is
roughly the same procedure as generating a data pond,
however, information about templates is stored in the
templates_index collection.

2) dynamically create, store, and edit drop-down lists
of elements. Creating a new drop-down list requires
defining a unique list label and specifying the list
elements. The drop-down list is then stored in the
multiple_choice_lists collection and can be
imported in any data pond containing a multiple choice
field that conceptually corresponds to this list.

4) Populating data ponds: Once a data pond has been
created, a user is able to populate it with data, employing
any of the available data acquisition services (described in
detail in III-B1) provided in this data lake context. For
instance, the following population methods may be used: (i)
initiation of automated data gathering crawlers, through the
Data Gathering Framework, which is capable of navigating the
web and popular social media platforms, identifying, gathering
and stockpiling within a data pond content of interest; (ii) by
employing the Input Collection Manager that provides: (a) the
construction of survey-style digital forms authorizing users to
manage data collection operations that concern electronic data
input of end-users into structured forms, (e.g., surveys, end-
user evaluations, museum experience records, etc.), and (b)
the automatic loading of CSV/XML/JSON formatted datasets.
At the system back-end, the MongoDB schemaless database
offers an elastic and flexible way to store data in its collections.
Practically, before storing the first document within an individ-
ual data pond, the specific data pond is not physically realized
at storage level: only a description of the fields that it would
contain is stored in the system dictionaries. Subsequently,
when the first document/record is inserted, a new collection
and its fields (name-value pairs) are dynamically generated
within MongoDB database; the collection name inherits the
unique data pond title stored in the datastores_index
collection, while each document field name acquires the field
name (which has been stored in the datastore_fields
collection) that corresponds to this particular data pond
through the datastore_id field; additionally, the field is
assigned a value from the collected content that matches its
data type. The advantages of applying MongoDB in the back-
end of our approach include intuitive, adaptable and versatile
data pond management, a straightforward way to scale up
already stored and loaded data ponds (e.g., after completing
the data population process, a user is able to redefine a
particular data pond by adding/editing/removing any number

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:13:53 UTC from IEEE Xplore. Restrictions apply.

of data pond fields), as well as fast performance and good
scalability, with query execution time remaining practically
unaltered as workload increases.

B. Further data lake components

In this subsection, the rest of the components showin in
figure 1, are described.

1) Data acquisition tier: Browsing the web, including
tourism-related sites (e.g. the Odysseus platform of the Greek
Ministry of Culture!), online encyclopedias, digital libraries,
portals and cultural govermental websites, large amounts of
information of interest in the CH domain and in the tourism
sector can be retrieved. Besides that, nowdays, large volumes
of data concerning the CH field and the tourism sector are pro-
duced and uploaded in popular SM platforms like Facebook,
TripAdvisor or Twitter. This information can be utilized in
numerous cultural and tourism-related applications, and there-
fore the capturing of this information constitutes an essential
task for many cultural and tourism-related foundations. To
support this need for information capturing in the domains of
culture and tourism, the proposed approach offers an efficient
data acquisition unit, that comprises two individual modules
as illustrated in the Data Acquisition Tier of figure 1.

e The Data Gathering Framework provides various web
scraping services allowing users to configure and launch
automated data acquisition tasks against widespread SM
platforms (currently Facebook and TripAdvisor crawlers
are available, while support for more SM platforms is
under development). At the heart of this module lies
the open source crawling framework Scrapy?, which
is responsible for scraping SM content. To initiate the
crawling mechanism, the appropriate web scraping spider
needs to be provided with the initial seed URLs; subse-
quently, the spider identifies the respective SM platform,
navigates in the HTML elements of the current page,
recognizes and extracts the targeted data (e.g., cultural
venues, Pols, reviews). However, in their efforts to make
their content more interactive and improve user experi-
ence, SM platforms utilize to a great extent Javascript,
Ajax and dynamic content, making the crawling process
and data extraction process more tricky; to tackle this
issue, the Data Gathering Framework utilizes the Sele-
nium library?, which provides a web browsing method
that simulates human behaviour through a browser on
a given website and allows the programmatic collection
of web page data. Furthermore, the Data Gathering
Framework involves a focused crawl service, utilizing
the ACHE crawling infrastructure®, tailored to operate
thematic crawls on the open web with the view to uncover
new resources that might hold information of interest
in the CH field and the tourism domain. The ACHE
crawler ranks URLs in the crawl frontier and classifies

Uhttp://odysseus.culture.gt/
Zhttps://docs.scrapy.org/en/latest/intro/overview.html
3https://pypi.org/project/selenium/
“https://github.com/VIDA-NY U/ache

the crawled pages as relevant or irrelevant using machine
learning techniques. It has to be noted that the Data
Gathering Framework includes provisions to respect user
privacy and ensure -to the greatest extent possible using
reasonable means- that no individual may be identifiable
through the collected data.

o The Input Collection Manager supports a variety of
services supplying users with suitable mechanisms to
(i) manage (in a stand-alone data pond) questionnaire-
style digital forms tailored for cultural surveys, as well
as (ii) gather the associated survey electronic records
filled up by end-users, who have access on the particular
data pond (described in detail in User Management and
Admission Control service in III-B2); (iii) reuse entire or
segments of the questionnaires created through the Dara
Pond Template Management service; and (iv) import/load
structured CSV/XML/JSON formatted datasets, via a ro-
bust document importing mechanism, that automatically
matches the columns of the file with the pre-defined
data pond fields and for each data item (commonly a
row in the CSV file or an element under the root of
the XML/JSON document) a new data pond record is
created and stored. Additionally, we have to note that
all of the above functionalities are native in our work
and are linked with the Data Storage and Management
service (described in detail in III-A).

2) User interface tier: As depicted in figure 1, the User
Interface layer consists of three modules related with the
system’s User Management and Admission Control, the Data
Analysis and Visualization and the Publish/Subscribe Collab-
oration services respectively.

o Regarding the User Management and Admission Control,
this module is responsible for administering the system’s
users by granting the appropriate rights and permissions,
defining thus access control on data ponds and the
records stockpiled within them. The users in the system’s
community are classified in the following categories: (i)
System administrators, who are granted with all privi-
leges and are capable to manage all data ponds and the
collected records, while they are allowed to administer
all user types and assign user roles in the data lake;
(ii) Power-users are broadly curators responsible for their
own data ponds (and the data stored within them). They
are supplied with the suitable permissions to compose
and manage new data ponds, establish data gathering
procedures (c.f. section III-B1); they are able to access,
filter, investigate and visualize collected data, while they
may request from the system administrator to attach
certain end-users in the data ponds they possess, or even
cooperate with other power-users, who bear similar inter-
ests and wish to participate in a specific study by applying
the Publish/Subscribe tool; (iii) End-users are located at
the lowest level of the user management hierarchy, as they
are provided with fewer functionalities and capabilities
in the data lake ecosystem. The are able to contribute

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:13:53 UTC from IEEE Xplore. Restrictions apply.

in data collection tasks by creating/viewing/editing elec-
tronic records out of questionnaire-style forms in the data
ponds they are assigned to; they are allowed to apply
shallow analysis operations on their own contributed data;
however, they are neither able to manage data ponds, nor
view records created by other users across the same data
pond.

o The Data Analysis and Visualization service provides
a robust, point-and-click query and data handling tool
allowing users to explore, filter out and analyze multi-
ple fields of the stored data of each data pond, with-
out necessitating any MongoQL (MongoDB Query Lan-
guage) knowledge or any form of IT experience. Ad-
ditionally, this service supports data visualization by
exporting charts in miscellaneous forms such as his-
tograms, pie charts, (heat) maps, (stacked) bars/columns,
area/mekko/bubble charts and scatter plots. Exporting a
graph requires a procedure of three phases where the
user: (i) determines the chart type, (ii) selects the desired
dataset by designating a data pond and any number of its
fields, and (iii) establishes filtering conditions/restriction
on the specified dataset (if needed). It is worth mentioning
that the data lake environment assists users by offering
them online assistance with examples for the various data
analysis elements.

e Regarding the Publish/Subscribe Collaboration mech-
anism, this handy and user-friendly tool supports the
sharing of datasets (or dataset segments), the exploration
of the available data ponds, as well as the cooperation
between power-users within the data lake environment. A
power-user is able to use this functionality by applying
the subsequent two-step procedure: (i) initially, she has
to search for already stored data ponds that fulfill the
given keyword-based query; after picking out any of the
resulting data ponds, she is able to register a subscription
request to the possessor(s) of the chosen data pond(s),
seeking access permission on the data pond’s contents
(schema definition). The data pond owner can accept or
decline the subscription request; if the request is accepted,
the initial power-user can access the data pond’s contents;
(ii) afterwards, having access in the data pond’s schema,
the power user may choose any number of data pond
fields and send a follow-up subscription request to the
data pond owner(s) to access the selected data pond fields
at record level. In the same manner, the owner(s) of the
data pond(s) may accept or deny the request as is, or opt
to share only specific data pond field records, selectively
granting thus access to a subset of the fields initially
requested for.

Once both steps have been completed, the requesting power-
user has obtained access to view the data to which she has
subscribed, employ them alongside with her own data ponds
and/or export visualization graphs. Any newly introduced
records matching the subscription are incorporated in the
subscribed data pond, while the subscribed power-user will

be appropriately notified.

3) Implementation overview: Our data lake environment
has been entirely developed using open source software.
The Data Gathering Framework (shown in Data Acquisi-
tion Tier of figure 1) is implemented exploiting the LAMP
(Linux/Apache/MariaDB/PHP) solution stack for temporary
storage of the extracted data and was developed using Python
tools. The other built-in components were developed applying
the web application framework Laravel and the NoSQL DBMS
MongoDB as the back-end of our system’s infrastucture (in
figure 1, these components are surrounded by the solid green
line). To enhance system interactivity, many operations utilize
the JavaScript/JQuery/AJAX programming languages.

IV. CONCLUSION AND FUTURE WORK

In this paper we have presented a novel, integrated sys-
tem for collecting, managing, analyzing and sharing diverse,
multi-faceted CH/tourism-related data. The proposed system
can gather data from both structured and unstructured/semi-
structured sources, and stores all data under a homogenized
scheme in a flexible, document-oriented store. Users may
access the data either on-request, through data analytics and
visualization services, or according to a publish-subscribe
scheme. The proposed system also includes functionality for
administrators to manage users and access rights to the con-
tent. The system is designed to require low or no IT expertise
for deploying, populating and managing data collections, fa-
cilitating and accelerating the relevant operations.

In our future work, we aim to conduct extended performance
evaluation experiments to compare in detail the performance
cultural/tourism-related data lakes employing NoSQL DBMS,
such as MongoDB, and hybrid cultural/tourism-related data
lakes realizing warehousing techniques over RDBMSs. We
also plan to develop a module to supply the data lake en-
vironment with the ability to understand scripts utilizing the
proper NLP (Natural Language Processing) tools, with the
view to achieve sentiment analysis of the captured review texts
and underpin recommendations on touristic destinations and
points-of-interest for users.

V. ACKNOWLEDGMENT

This research has been co-financed by European Union
and Greek national funds through the Operational Pro-
gramme “Competitiveness, Entrepreneurship and Innovation”,
under the call RESEARCH—CREATE—INNOVATE (project
code: TIEDK - 03874)

REFERENCES

[1] N. A. Ghani, S. Hamid, I. A. T. Hashem, and E. Ahmed, “Social media
big data analytics: A survey,” Comput. Hum. Behav., vol. 101, pp. 417—
428, 2019.

[2] S. B. Abkenar, M. H. Kashani, E. Mahdipour, and S. M. Jameii, “Big
data analytics meets social media: A systematic review of techniques,
open issues, and future directions,” Telematics Informatics, vol. 57, p.
101517, 2021.

[3] H. Dabbechi, N. Z. Haddar, H. Elghazel, and K. Haddar, “Nosql data
lake: A big data source from social media,” in HIS, Virtual Event,
India, December 14-16, 2020, ser. Advances in Intelligent Systems and
Computing, A. Abraham, T. Hanne, O. Castillo, N. Gandhi, T. N. Rios,
and T. Hong, Eds., vol. 1375. Springer, 2020, pp. 93-102.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:13:53 UTC from IEEE Xplore. Restrictions apply.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

L. D. Valle and R. S. Kenett, “Social media big data integration: A new
approach based on calibration,” Expert Syst. Appl., vol. 111, pp. 76-90,
2018.

G. Ritzer, P. Dean, and N. Jurgenson, “The coming of age of the
prosumer,” American behavioral scientist, vol. 56, no. 4, pp. 379-398,
2012.

J. Pybus, “Social networks and cultural workers: Towards an archive for
the prosumer,” Journal of Cultural Economy, vol. 6, no. 2, pp. 137-152,
2013.

O. Ormandjieva, M. Omidbakhsh, and S. Trudel, “Measuring the 3v’s
of big data: A rigorous approach,” in Joint Proceedings of the 30th
International Workshop on Software Measurement and the 15th Inter-
national Conference on Software Process and Product Measurement
(IWSM Mensura 2020), Mexico City, Mexico, October 29-30, 2020, ser.
CEUR Workshop Proceedings, A. Abran and 0. Ozcan—Top, Eds., vol.
2725. CEUR-WS.org, 2020.

V. Poulopoulos, C. Vassilakis, M. Wallace, A. Antoniou, and G. Lep-
ouras, “The effect of social media trending topics related to cultural
venues’ content,” in SMAP, Zaragoza, Spain, September 6-7, 2018.
IEEE, 2018, pp. 7-12.

S. Bampatzia, A. Antoniou, G. Lepouras, C. Vassilakis, and M. Wallace,
“Using social media to stimulate history reflection in cultural heritage,”
in SMAP, Thessaloniki, Greece, October 20-21, 2016, 1. Anagnostopou-
los and I. Paraskakis, Eds. IEEE, 2016, pp. 89-92.

C. Vassilakis, V. Poulopoulos, M. Wallace, A. Antoniou, and G. Lep-
ouras, “Tripmentor project: Scope and challenges,” in CI@SMAP,
Larnaca, Cyprus, June 9, 2019, ser. CEUR Workshop Proceedings,
A. Antoniou and M. Wallace, Eds., vol. 2412. CEUR-WS.org, 2019.
A. Alharthi, V. Krotov, and M. Bowman, “Addressing barriers to big
data,” Business Horizons, vol. 60, no. 3, pp. 285-292, 2017.

J. Han, E. Haihong, G. Le, and J. Du, “Survey on nosql database,”
in 2011 6th international conference on pervasive computing and
applications. 1EEE, 2011, pp. 363-366.

A. Oussous, F. Benjelloun, A. A. Lahcen, and S. Belfkih, “Nosql
databases for big data,” Int. J. Big Data Intell., vol. 4, no. 3, pp. 171-
185, 2017.

A. Corbellini, C. Mateos, A. Zunino, D. Godoy, and S. N. Schiaffino,
“Persisting big-data: The nosql landscape,” Inf. Syst., vol. 63, pp. 1-23,
2017.

K. Dehdouh, O. Boussaid, and F. Bentayeb, “Big data warehouse:
Building columnar nosql OLAP cubes,” Int. J. Decis. Support Syst.
Technol., vol. 12, no. 1, pp. 1-24, 2020.

R. Esbai, F. Elotmani, and F. Z. Belkadi, “Toward automatic generation
of column-oriented nosql databases in big data context,” Int. J. Online
Biomed. Eng., vol. 15, no. 9, pp. 4-16, 2019.

B. Imasheva, A. Nakispekov, A. Sidelkovskaya, and A. Sidelkovskiy,
“The practice of moving to big data on the case of the nosql database,
clickhouse,” in Optimization of Complex Systems: Theory, Models,
Algorithms and Applications, WCGO, Metz, France, 8-10 July, 2019, ser.
Advances in Intelligent Systems and Computing, H. A. L. Thi, H. M.
Le, and T. P. Dinh, Eds., vol. 991. Springer, 2019, pp. 820-828.

P. Sudrez-Otero, M. J. Mior, M. José Sudrez-Cabal, and J. Tuya,
“Maintaining nosql database quality during conceptual model evolution,”
in 2020 IEEE International Conference on Big Data (Big Data), 2020,
pp. 2043-2048.

A. Khalil and M. Belaissaoui, “New approach for implementing big
datamart using nosql key-value stores,” in 5th International Conference
on Cloud Computing and Artificial Intelligence: Technologies and Appli-
cations, CloudTech 2020, Marrakesh, Morocco, November 24-26, 2020,
M. Essaaidi, M. Zbakh, and A. Ouacha, Eds. 1EEE, 2020, pp. 1-6.
R. Liu, H. Isah, and F. Zulkernine, “A big data lake for multilevel
streaming analytics,” in IBDAP. 1EEE, 2020, pp. 1-6.

R. Li, H. He, R. Wang, S. Ruan, Y. Sui, J. Bao, and Y. Zheng, “Trajmesa:
A distributed nosql storage engine for big trajectory data,” in 36th
IEEEICDE, Dallas, TX, USA, April 20-24, 2020. IEEE, 2020, pp.
2002-2005.

S. Kim and Y. S. Kanwar, “Geoycsb: A benchmark framework for the
performance and scalability evaluation of nosql databases for geospatial
workloads,” in 2019 IEEE International Conference on Big Data (Big
Data), Los Angeles, CA, USA, December 9-12, 2019, C. Baru, J. Huan,
L. Khan, X. Hu, R. Ak, Y. Tian, R. S. Barga, C. Zaniolo, K. Lee, and
Y. F. Ye, Eds. 1IEEE, 2019, pp. 3666-3675.

H. Mallek, F. Ghozzi, O. Teste, and F. Gargouri, “Bigdimetl with nosql
database,” in Knowledge-Based and Intelligent Information & Engineer-

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[37]

[38]

[39]

[40]

[41]

ing Systems: Proceedings of the 22nd International Conference KES-
2018, Belgrade, Serbia, 3-5 September 2018, ser. Procedia Computer
Science, R. J. Howlett, L. C. Jain, Z. Popovic, D. B. Popovic, S. N.
Vukosavic, C. Toro, and Y. Hicks, Eds., vol. 126. Elsevier, 2018, pp.
798-807.

A. A. Imam, S. B. Basri, R. Ahmad, J. Watada, and M. T. Gonzalez-
Aparicio, “Automatic schema suggestion model for nosql document-
stores databases,” J. Big Data, vol. 5, p. 46, 2018.

R. Sellami and B. Defude, “Complex queries optimization and evaluation
over relational and nosql data stores in cloud environments,” I[EEE Trans.
Big Data, vol. 4, no. 2, pp. 217-230, 2018.

M. H. Gharanai, R. S. Gh, and A. A. Rashid, “In the digital future:
Revitalizing information management systems in afghan settings through
not only SQL (mongodb) technology,” in SKIMA, Chengdu, China,
December 15-17, 2016. 1EEE, 2016, pp. 45-48.

H. Abbes and F. Gargouri, “Big data integration: A mongodb database
and modular ontologies based approach,” in Knowledge-Based and
Intelligent Information & Engineering Systems: Proceedings of the 20th
International Conference KES-2016, York, UK, 5-7 September 2016,
ser. Procedia Computer Science, R. J. Howlett, L. C. Jain, B. Gabrys,
C. Toro, and C. P. Lim, Eds., vol. 96. Elsevier, 2016, pp. 446-455.

, “Mongodb-based modular ontology building for big data integra-
tion,” J. Data Semant., vol. 7, no. 1, pp. 1-27, 2018.

L. Karim, A. Boulmakoul, and A. Lbath, “Real time analytics of
urban congestion trajectories on hadoop-mongodb cloud ecosystem,” in
Proceedings of the Second International Conference on Internet of things
and Cloud Computing, ICC 2017, Cambridge, United Kingdom, March
22-23, 2017, H. Hamdan, D. E. Boubiche, H. Toral-Cruz, S. Akleylek,
and H. Mcheick, Eds. ACM, 2017, pp. 29:1-29:11.

N. Q. Mehmood, R. Culmone, and L. Mostarda, “Modeling temporal
aspects of sensor data for mongodb nosql database,” J. Big Data, vol. 4,
p. 8, 2017.

S. Hiriyannaiah, G. M. Siddesh, P. Anoop, and K. G. Srinivasa, “Semi-
structured data analysis and visualisation using nosql,” Int. J. Big Data
Intell., vol. 5, no. 3, pp. 133-142, 2018.

W. Jiang, L. Zhang, X. Liao, H. Jin, and Y. Peng, “A novel clustered
mongodb-based storage system for unstructured data with high avail-
ability,” Computing, vol. 96, no. 6, pp. 455-478, 2014.

G. Xu, Y. Ren, H. Li, D. Liu, Y. Dai, and K. Yang, “Cryptmdb: A
practical encrypted mongodb over big data,” in [EEE International
Conference on Communications, ICC 2017, Paris, France, May 21-25,
2017. 1EEE, 2017, pp. 1-6.

T. Jia, X. Zhao, Z. Wang, D. Gong, and G. Ding, “Model transformation
and data migration from relational database to mongodb,” in 2016 IEEE
International Congress on Big Data, San Francisco, CA, USA, June 27
- July 2, 2016, C. Pu, G. C. Fox, and E. Damiani, Eds. IEEE Computer
Society, 2016, pp. 60-67.

M. P. Stevic, B. Milosavljevic, and B. R. Perisic, “Enhancing the
management of unstructured data in e-learning systems using mongodb,”
Program, vol. 49, no. 1, pp. 91-114, 2015.

A. Rahartomo, R. F. Aji, and Y. Ruldeviyani, “The application of big
data using mongodb: Case study with scele fasilkom UI forum data,”
in IWBIS, Jakarta, Indonesia, October 18-19, 2016. 1EEE, 2016, pp.
51-56.

L. Chen, N. Zhang, H. Sun, C. Chang, S. Yu, and K. R. Choo,
“Secure search for encrypted personal health records from big data nosql
databases in cloud,” Computing, vol. 102, no. 6, pp. 1521-1545, 2020.
S. Saini, S. P. Singh, and R. Agarwal, “Healthcare analytics with R and
mongodb using social media,” Int. J. Adv. Intell. Paradigms, vol. 18,
no. 4, pp. 552-567, 2021.

M. R. Naveira, R. Sanchez-de-Madariaga, J. B. Castro, L. C. Garcia,
G. V. Gonzalez, S. Pérez, M. P. Carrasco, F. Martin-Sanchez, and
A. M. Carrero, “An archetype query language interpreter into mongodb:
Managing nosql standardized electronic health record extracts systems,”
J. Biomed. Informatics, vol. 101, p. 103339, 2020.

K. Deligiannis, P. Raftopoulou, C. Tryfonopoulos, N. Platis, and C. Vas-
silakis, “Hydria: An online data lake for multi-faceted analytics in the
cultural heritage domain,” Big Data Cogn. Comput., vol. 4, no. 2, p. 7,
2020.

D. Hows, P. Membrey, E. Plugge, and T. Hawkins, “Introduction to
mongodb,” in The Definitive Guide to MongoDB. Springer, 2015, pp.
1-16.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:13:53 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T19:10:15-0400
	Preflight Ticket Signature

