
Compiling 3D Models of European Heritage from User Domain XML 

Brian Farrimond , Robina Hetherington  

Liverpool Hope University College  

{ farrimb@hope.ac.uk, hetherr@hope.ac.uk } 

Abstract 
Europe has a unique heritage and culture that is 

largely hidden from its young people.  New information 

and communication technologies present an opportunity 

to involve the young people of Europe in discovering this 

heritage and presenting it to others in an exciting, 

dynamic way. 
This paper describes early work on the INHERIT 

project which involves the development of a set of tools, 

data and structures to build and manage historical and 

three-dimensional models.  This will enable school and 

college students to share in creating and exploring 

distributed simulations of dynamic aspects of history, 
geography, economics, politics and other subjects 

closely associated with European citizenship.  With the 

tools developed it is envisaged that school pupils will be 

able to add, for example, landscape, buildings, avatars 

and a range of other objects, to a virtual world that 
models the heritage of Europe.  The tools are based upon 

XML technologies to structure and distribute data and 

X3D or VRML to display that three-dimensional data. 

Keywords--- Information Visualization, 

Interactive 3D Graphics, X3D, XML, VRML, 

Cultural Heritage.

1 Introduction 

The time is now right for much wider applications of 

Web3D graphics.  The growth of the use of broadband 

Internet connections and a significant rise in the number 

of relatively low-priced computers readily available, 

which can handle both the file size and rendering 

requirements of 3D models, mean that 3D worlds can be 

enjoyed by many.   

The use of 3D is now standard in computer games 

and is now an expectation of the younger generation for 

computer graphics.  This means that people, under the 

age of say 25, have very high levels of computer literacy 

and the ability to conceptualize in three-dimensions.  

Many games now incorporate the ability to create or add 

to three-dimensional environments. (Arendash(2004)).  

However few tools exist to allow school pupils to create 

models of their own environment.  

The INHERIT Project seeks to develop a set of 

tools, data and structures to enable school and college 

students to share in creating and exploring distributed 

models of their cultural heritage.  INHERIT will allow 

pupils (and teachers) to collaborate and communicate on-

line while exploring and interacting with the INHERIT 

simulations.  The 3D simulations will be built within the 

context of a collaborative environment enabled by the 

Internet.  The tools are intended to be simple to use 

enabling students to generate rapidly 3D representations 

of specific historic events or environments.  This paper 

describes early work in developing the data structures 

that will underlie these tools. 

Churches were chosen as an initial subject of 

investigation for modelling.  Every settlement across 

Europe has a church.  It is usually the oldest building in 

the settlement and contains much of the local cultural 

heritage.  The older, Gothic churches were also built 

according to quite strict rules.  Whilst each individual 

church will have its own individual elements, it will be 

built up of a standard set of components, such as a nave, 

tower, transepts.  These rules mean that the structure can 

be componentized and the individual characteristics can 

be stored as parameters.  For instance a tower can be 

round or square, it can be topped with a steeple or roof, 

and it can be given dimensions.   

The set of tools described are built using XML 

(eXtensible Markup Language) technologies. XML has 

been designed to meet the challenges of large-scale 

electronic publishing.  XML’s design goals, as set out by 

the W3C (2004) make it ideal for storing the components 

of historical structures and their parameters.  The XML 

file is easy to create and can be processed for display 

over the Internet.  The display of the object is with X3D 

(eXtensible 3D) or VRML (Virtual Reality Modelling 

Language).  X3D, an application of XML, has recently 

received ISO International approval, is the new standard 

designed to enable real-time communication of 3D data, 

Proceedings of the Ninth International Conference on Information Visualisation (IV’05) 

1550-6037/05 $20.00 © 2005 IEEE 
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore.  Restrictions apply. 



in particular over the Internet. (Trevett (2004)).  

However, as X3D is still relatively new and browser 

plugins are still in development and are not as widely 

used as VRML plugins, the XML data is also translated 

into VRML.  

The objectives of this initial stage of the INHERIT 

project are: 

• To develop a system to subdivide common 

structures such as churches into a set of 

components 

• To develop a data structure to store the 

components and their associated values as 

parameters 

• To develop a system to process this data into 

3D formats, VRML or X3D. 

This paper first outlines related work in the field of 

XML technologies and 3D objects and how 3D is being 

used to enhance and reinforce learning experiences.  It 

then explains the rationale behind the XML technologies 

used in INHERIT and how they have been applied to the 

generation of models of churches.  The data structures 

for these buildings are described.  Finally conclusions are 

drawn as to future developments of the building tool. 

2 Related Work 

In the education field there a number of approaches 

to the application of XML technologies in the generation 

of three-dimensional representations of real life objects.  

Polys (2003) has applied XSLT (eXtensible Stylesheet 

Transformations) technologies to create multiple 

visualizations of the same data.  He used data structured 

in CML (Chemical Markup Language) as the source of 

molecular information to generate the visualizations.  He 

demonstrated that a highly structured format, CML, 

provides a format for the conversion and sharing of data 

files. 

Figure 1 - 2D Time Map: Railways and Churches 

Farrimond et al (2003) have demonstrated the use of 

XML based Time Maps to allow the presentation of a 

sequence of events in spatial context (Figure 1).  This 

work enabled historical events, economic and political 

activities and other developments to be modelled and 

studied in a static and relatively non-interactive fashion 

across the World Wide Web.  These 2-d simulations 

were developed and tested by a number of University 

students.  

The Time Map work involved the use of historical 

data contained within XML with objects stored with time 

stamped attributes such as position, size, political 

control.  These attributes were then displayed in the 

generated display to indicate different times or states of 

the event or object.  For instance the various stages of 

construction of the railway shown in Figure 1 are 

displayed in different colours.  Further Time Map work 

used XSL (Extensible Stylesheet Language ) to generate 

VRML from the XML.  (Farrimond et al. 2004)  This 

work develops the use of XML to contain data but 

explores alternative technologies to process the XML.  

Hetherington et al (2004) have demonstrated the use 

of XML and X3D technologies to integrate temporal data 

within X3D models and display buildings in various 

states or times accompanied by historical data.  XML 

technologies were applied to structure the data or model 

file, in order that it could be filtered and displayed 

according to different criteria, in their case, time periods. 

The 3D Virtual Buildings Project described by 

Bonnett (2003) enables students to generate 

representations of historic settlements using 3D 

modelling software; to explore how multiple methods of 

knowledge representation could be used to enhance 

student learning outcomes; and more specifically, to 

determine how 3D, and the process of 3D model 

construction, used in conjunction with text, could help 

students to realize a fundamental point, that historical 

representations are models, models that must be 

distinguished from the objects they purport to represent.   

Wojciechowski et al (2004) have demonstrated a 

system to enable museums to build and manage virtual 

exhibitions of artifacts through X-VRML, a high level 

XML-based language.  The X-VRML language applies 

the concept of parameterization of scenes to generate 

three-dimensional representations of objects within a 

virtual museum.  The parameters can define elements of 

the scene such as for instance wall coverings.  The 

ARCO system was developed to enable the exploration 

of museum artifacts by different audiences, in particular 

children, enabling museum staff to build interactive 

learning presentations.  

Whilst the use of 3D to represent objects to students 

in an interactive manner to encourage them to engage 

and explore these objects in a meaningful way is 

important, the main objective of INHERIT is to develop 

a tool which will enable school pupils to create models 

of their own environment.  Underpinning the INHERIT 

Proceedings of the Ninth International Conference on Information Visualisation (IV’05) 

1550-6037/05 $20.00 © 2005 IEEE 
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore.  Restrictions apply. 



Project is a belief that modelling real world entities (such 

as individual buildings in the micro-scale or urban 

systems in the macro-scale) compels the modeller to look 

at the modelled entity with a different level of intensity. 

Arendash (2004) applies a Game technology, Unreal 

Editor, to enable non specialist modelers to generate their 

own 3D environments.  He demonstrates that anyone, as 

opposed to a specialist modeller using an expensive 3D 

development tool such as Maya or 3ds max, can create 

“rich, compelling and very lively 3D experiences”.  This 

paper explores the data structures necessary to treat a 

building, such as a church, as a collection or assembly of 

components.  The next stage will be to apply a user 

interface that is intuitive and engaging for school pupils 

to use, learning from Game technology. 

3 Inherit System Overview 

The aim of component-based modelling is to 

provide descriptions of artifacts expressed in terms of 

their components that can be used to generate 

visualisations in 3D languages such as VRML and X3D.  

This is analogous to general programming principles in 

which coding is expressed in terms that are problem 

based and paradigm based.  For example, Fortran 

scientific programs are expressed in terms scientists and 

engineers understand that are relevant to the problems 

they are trying to solve.  Equally, programming 

languages in the object oriented paradigm enable 

developers to think and express themselves in terms of 

classes and objects.  In both cases the nature of the 

underlying hardware is hidden and the developer does 

not need to understand it.  Also, migration of a program 

to a new host is feasible if the appropriate compilers are 

available.  This paper aims to demonstrate how the same 

principle can be applied to 3D modelling.  The XML 

descriptions created by the user are expressed in terms 

the user understands and are related to the building they 

are trying to model.  The XML descriptions are the 

translated into the target 3D language automatically by 

compilers.  The user does not need to understand the 3D 

language.  As new visualisation languages become 

available, new compilers can be developed that are used 

to translate the descriptions into the new language.   

A benefit of this approach is that if the compiler is 

client side, the server need only serve the user's 

description to the client.  The client compiles the 

visualisation and displays it.  Generally, description files 

are much smaller than the equivalent VRML or X3D.  

This is equivalent to the X3D <Sphere> being able to 

specify the equivalent of an <IndexedFaceSet> with a 

large number of vertices.  For instance the XML file for 

the simple church illustrated in Figure 2.is 11Kb in size, 

once compiled into a 3D model file it is 49 Kb and this is 

for a model with simple geometries; once applied to a 

structure with complex geometries, such as curves, much 

greater compression ratios can be achieved.  The model 

shown in Figure 20 has an XML Description file size of 

50 Kb and a model file of 388 Kb. 

Figure 2 Plan and model illustrating the 
standard church components 

Finally the description provides a natural storage 

mechanism for all kinds of information about the artifact 

including photographs, sounds, text and links to web 

resources.  The compiler only uses the relevant part of 

the description but may be extended to make use of this 

other information, especially if it is attached to particular 

components. 

Component-based modelling depends upon an 

analysis of real artifacts, identifying components of those 

artifacts that have a common underlying structure 

customised by parameters.  Traditional 3D modelling 

will, for example, use a <Box> node customised by 

giving specific values for its length, breadth and height.  

European churches and cathedrals of the Romanesque 

and Gothic types form a suitable vehicle for such 

analysis.  These buildings conform to a number of 

standard design features, for example all such churches 

have a nave, many have chancels, some have transepts 

and side aisles, towers and spires, see Figure 2.  The 

orientation and positioning of these components are 

standard across Europe.  The nave is aligned west-east, 

the chancel is at the east end of the nave with the same 

orientation, transepts are aligned north or south from the 

nave or chancel.  Side aisles extend nave, chancel and 

transepts along their edges.  Towers are placed at a 

number of places within this layout such as at the 

crossing of the nave and transepts, and on either side of 

the west end of the nave.  Some churches do not follow 

this east west alignment but descriptions of these 

buildings refer to the alignment as being based on the 

"liturgical east". 

Proceedings of the Ninth International Conference on Information Visualisation (IV’05) 

1550-6037/05 $20.00 © 2005 IEEE 
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore.  Restrictions apply. 



3.1 Analysing church structure as a set of 

rooms 

In our work, analysis of the architectural style of 

traditional English churches reveals that their major 

components can be classified as variations of an 

underlying type which we call the room. The nave, 

chancel, transepts and towers can all be regarded as room
type objects although in the XML, the user does not use 

the term room explicitly. Instead, the XML uses terms 

for the components that are meaningful in the context of 

churches: nave, chancel etc.  The room comes into play 

when the XML is analysed and transformed by the 

compiler as described below. It is intended that the 

values of the XML attributes used to parameterise the 

components should be measurable from plans, 

photographs and on-site measurements using tape 

measures.  

The XML description of a church building that 

identifies its major rooms is given in Figure 3  

In the case of the squaretower, chancel and 

nave, length is west-east and breadth is south-north.  

In the case of the northtransepts and 

southtransepts, length is south-north and breadth
is west-east.  These can be assumed because of the 

standard layout of these churches as explained above. 

<building name="test1.xml" units="feet"> 
   <church> 
      <squaretower    length="18" breadth="22"  

             astdisp="-18" northdisp="0"> 
 : 
 </squaretower> 

      <nave           length="62" breadth="22"  
                      eastdisp="0" northdisp="0"> 
 : 
 </nave> 

      <chancel        length="40" breadth="18"  
                      eastdisp="62" northdisp="0"> 
 : 
 </chancel> 

      <southtransept length="40" breadth="18"  
                      eastdisp="50" northdisp="-11"> 
 : 
 </southtransept> 

      <northtransept length="40" breadth="18"  
                     eastdisp="20" northdisp="11"> 
 : 
 </northtransept> 

   </church> 
</building> 

Figure 3  The XML description of a church 
building that identifies its major rooms 

Other types of room will be added as the project 

develops.  These include porches, Lady Chapels and 

Galilee chapels as at Durham Cathedral and polygonal 

plan chancels such as at Gloucester and Norwich 

cathedrals. 

The description of a nave as an example of a room
in terms of its sub-components is given in Figure 4. 

<nave length="62" breadth="22" eastdisp="0" northdisp="0"> 
   <roofsouth roofthickness="0.5" apexheight="48.4"  
              baseheight="38.3" horizontalprojection="11"  
              baselength="60" leftapexprojection="0"  
              rightapexprojection="0" /> 

   <roofnorth roofthickness="0.5" apexheight="48.4" 
              baseheight="38.3" horizontalprojection="11" 
              baselength="60" leftapexprojection="0" 
              rightapexprojection="0" /> 

   <wallwest basewallthickness="1" leftheight="40"  
             rightheight="40" apexheight="50.1" 
type="gable"> 
   : 
   </wallwest> 

   <wallsouth basewallthickness="3" leftheight="38.3" 
              rightheight="38.3" type="rectangular"> 
   : 
   </wallsouth> 

   <wallnorth basewallthickness="3" leftheight="38.3" 
              rightheight="38.3" type="rectangular"> 
   </wallnorth> 

   <sideaislenorth length="17" leftoffset="1" breadth="15"  
                   roofthickness="0.5" isfullgable="false"> 
   : 
   </sideaislenorth> 

   <walleast basewallthickness="1" leftheight="40" 
             rightheight="40" apexheight="50.1" 
type="gable"> 
   : 
   </walleast> 
</nave> 

Figure 4  An example of a room in terms of its 
sub-components 

3.2 Roofs 

Roofs are located on each of the four edges of the 

room: north, south, east and west.  The roofs rise from 

the room's wall to an apex.  At present, roofs are base 

components with no further sub-division.  Hence the 

element has attributes but no sub-elements.  In general, 

the roof is a 2-D plane with a thickness specified by the 

roofthickness attribute.  It is regarded as having its 

upper edge horizontal at a height above the ground given 

by apexheight.  Its lower edge is also horizontal at a 

height given by baseheight.  The other attributes 

provide the opportunity to have the upper edge longer or 

Proceedings of the Ninth International Conference on Information Visualisation (IV’05) 

1550-6037/05 $20.00 © 2005 IEEE 
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore.  Restrictions apply. 



shorter than the lower edge to represent, for example, 

two roofs meeting at right angles along a common 

guttering as shown below in Figure 5 

Figure 5  Showing a detail of a model with two 
roofs meeting at right angles 

3.3 Walls 

A room may have walls along each of its edges: 

north, south, east and west.  The wall attributes identify 

the ground plan thickness through the 

basewallthickness attribute. They also provide for 

walls whose top edges slope rather than are horizontal.  

Two main types of wall are identified through the type

attribute.  These are gable and rectangular.  The 

rectangular type may be rectilinear or trapezoidal as 

shown in Figure 6. 

Figure 6  Wall types 

A gable wall has an apex somewhere along its top 

edge as shown in Figure 6 

Walls are more complex components than roofs and 

have a number of sub-components.  These are currently: 

wallsection, arcadesection and buttress.  An 

example is given in Figure 7.  The wall is considered as a 

number of wall sections and arcade sections stacked on 

top of each other.  The id attribute determines the 

stacking order.  

<wallsouth basewallthickness="3" leftheight="38.3"  
           rightheight="38.3" type="rectangular"> 
   <arcadesection id="0"> 
      <wallsection id="0" type="rectangular"  
                   wallthickness="3" leftheight="33"  
                   rightheight="33" > 
      : 
      </wallsection> 

      <column id="0" leftoffset="3.5" type="cylinder"  
                     h="10" r="1.5" /> 

      <column id="1" leftoffset="21.5" type="cylinder"  
                     h="10" r="1.5" /> 
   </arcadesection> 

   <wallsection id="1" type="rectangular"  
                wallthickness="2" leftheight="5.3"  
                rightheight="5.3"> 
   : 
   </wallsection> 

   <buttress id="0" centreoffset="1" anglefromnormal="45"> 
   : 
   </buttress> 

   <buttress id="1" centreoffset="21"> 
   : 
   </buttress> 
</wallsouth> 

Figure 7  XML fragment containing wall sub-
components 

wallsection: each wall section has its own 

thickness.  Optional wall section attributes enable 

sections to project over adjacent wall sections.  Each 

wall section may contain arches and windows - see 

below. 

arcadesections: an arcade section consists of a 

wall section plus any number of columns.  The 

leftoffset attribute for a column determines the 

position of the column relative to the left hand edge of 

the wall section as seen when facing the wall length.  

buttresses: a buttress is placed along the wall at a 

distance from the left edge of the wall determined by the 

centreoffset attribute.  The optional 

anglefromnormal attribute determines the angle in 

degrees from the normal to the owning wall.  Most 

buttresses have an anglefromnormal of 0.  Buttresses 

at corners are often at 45 degrees to the normal as shown 

in Figure 8. 

The buttress is built up from sections just as the wall 

is built up from sections as shown in Figure 10.  Each 

section has parameterised knee, hip heights and depths.  

The plan of the sections is currently rectangular.  

Proceedings of the Ninth International Conference on Information Visualisation (IV’05) 

1550-6037/05 $20.00 © 2005 IEEE 
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore.  Restrictions apply. 



Figure 8  Detail of a buttress at a corner 

A complex buttress can be created by stacking 

sections and by choice of knee and hip depth and heights.  

Figure 10 illustrates how two sections are stacked to 

form a buttress. Figure 9 shows the corresponding XML. 

            <buttress id="0" centreoffset="2"> 
               <buttresssection id="0" width="2" 
                           heightback="10" depthhip="1.7" 
                           heighthip="10" depthknee="2.5" 
                           heightknee="9" depthbase="3.0" /> 
               <buttresssection id="1" width="2" 
                           heightback="15" depthhip="1.7" 
                           heighthip="14" depthknee="1.7" 
                           heightknee="14" depthbase="1.7" 
/>
            </buttress> 

Figure 9  The XML description of a two section 
buttress 

Figure 10  Building a buttress 

3.4 Arches 

Arches are specified as part of a wall section.  The 

arch attributes identify the distance of the arch from the 

left end of the wall section, the height of the base of each 

side of the arch (which may rest on the top of columns) 

and measurements that enable the profile of the arch to 

be determined.  These measurements for the left side of 

the arch are illustrated in Figure 11. 

Figure 11  Measurements for the left side of an 
arch

Measurements for the right side of the arch are also 

recorded in attributes.  The profile of the arch cross 

section is specified by using indents and offsets as shown 

in Figure 12. 

<archid = "0" leftoffset = "6" leftfootheight = "0" 
              rightfootheight = "0" 
              cl = "15" wl = "5" dl = "1" 
              height = "28" 
              cr = "15" wr = "5" dr = "1" 
              insetfront =    "0.2,    0.5 ,  0.8,  1.2" 
              indentfront =   "0.2,    0.3,   0.4,  0.8 " 
              insetback =     "0.2,    0.5,   0.8,  1.2" 
              indentback =    "0.2,    0.3,   0.4,  0.8"/> 

Figure 12  XML for an arch 

The corresponding cross section is shown in Figure 

13.

Figure 13  Cross section of an arch 

Proceedings of the Ninth International Conference on Information Visualisation (IV’05) 

1550-6037/05 $20.00 © 2005 IEEE 
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore.  Restrictions apply. 



The cross section of the soffit is given by inset and 

indent pairs, insetfront and insetback, where inset 

is the distance from the outer arch towards the centre of 

curvature while indent is the horizontal distance into the 

wall from its outer surface.  The front and back of the 

arch are specified separately.  The effect of the 

description is shown in Figure 14. 

While this meets the needs of many architectural 

styles, further work is needed to describe successfully 

more elaborate cross sections that make use of rounded 

moulding. 

Figure 14  Model of an arch 

Thus in the photo in Figure 15 showing an arch in 

the transept of Wenlock Priory, the upper section can be 

described with insets and indents. However, the lower 

section with its rounded moulding requires a different 

approach that has yet to be implemented. 

Figure 15  Photograph of an arch in the transept 
of Wenlock Priory 

3.5 Windows 

A window is seen as having an arch as a sub-

component. Figure 16 gives the XML for a window.  

Circular or rose windows have yet to be implemented. 

<window id="0" sillheight="1"> 
   <arch id="0" leftoffset="41" leftfootheight="0"  
                rightfootheight="0" 
                cl="2" wl="1" dl="0.2" height="4.5" 
                cr="2" wr="1" dr="0.2" /> 
</window> 

Figure 16  XML code for a window 

3.6 Side aisles 

A side aisle can be attached to any wall of a 

squaretower, nave, chancel or transept.  The 

offset from the left end of the wall is specified by an 

attribute.  Sub-components of a sideaisle can include 

walls and roofs. 

3.7 Spires 

A square tower may be surmounted by a spire.  

Figure 17 gives the specification of an octagonal corned 

spire. 

<spire id="0" type="octagonalcornered" baseheight="92.7"  
              length="18" breadth="18" height="50"  
              wallthickness="2" cornerslopeheight="10"> 
</spire> 

Figure 17  The specification of an octagonal 
corned spire 

The cornerslopeheight gives the distance up the 

slope of the apex of the corner triangle as illustrated in 

Figure 18. 

cornerslopeheightcornerslopeheight

Figure 18  Detail of the junction of an octagonal 
spire and a square tower 

This section has covered the data structures used to 

build the models, examples of which can be seen in 

Figure 19 and Figure 20.  As can be seen some quite 

complex and varied forms can be created using this 

technique. 

Proceedings of the Ninth International Conference on Information Visualisation (IV’05) 

1550-6037/05 $20.00 © 2005 IEEE 
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore.  Restrictions apply. 



Figure 19  Interior of a model of typical gothic 
church architecture 

Figure 20  Exterior of a model of typical gothic 
church architecture

3.8 The development environment 

Figure 21  Diagram of the compiler process 

The strategy of the project is to enable a user to 

create a description graphically from components 

provided in a Component Library.  The approach will be 

similar to most graphical editing tools except that the 

components will not be abstract entities such as lines, 

circles, spheres and boxes but will be representations of 

real world objects.  The description will be stored as an 

XML Description.  This description can then be 

compiled to generate X3D or VRML as illustrated in 

Figure 21.  

So far the work has concentrated on the compiler 

section of the system to prove the concept.  The XML 

Description is edited using Notepad++ and CookTop. 

3.9 The compiler 

The compiler is written in C, making use of the 

Xerces C++ validating XML Parser (Apache XML 

Project).  Earlier work by Polys (2003), Farrimond et al 

(2004) and Hetherington et al (2004) all used XSL 

technologies to transform or parse XML data.  However, 

after initial consideration to use XSL to transform the 

XML Description into X3D or VRML, it soon became 

apparent that the mathematical processing required to 

generate the 3D models was too complex to achieve with 

XSL.  C proved to be a more satisfactory choice while 

proving the concept. 

Having read and parsed the XML Description, the 

compiler walks through the resulting DOM data structure 

generating its own internal representation based upon a 

C++ ROOM data structure shown in Figure 22.  The 

compiler has analysed the XML description into types of 

room. 

typedef struct { 
 double eastdisp; 
 double northdisp; 
 double length; 
 double breadth; 
 bool hasspire; 
 SPIRE spire; 
 bool hasroof[4]; 
 ROOF roof[4]; 
 bool haswall[4]; 
 WALL wall[4]; 
 bool hassideaisle[4]; 
 SIDEAISLE sideaisle[4]; 
} ROOM; 

Figure 22 Data structure for ROOM used in 
internal representation 

The SPIRE, ROOF, WALL and SIDEAISLE data 

types have equivalent structures. 

The compiler then uses the internal representation to 

generate the VRML or X3D output.  The structured 

nature of the XML Description lends itself to mapping 

onto the structured nature of VRML and X3D.  The 

room becomes a <Transform> node and the room sub-

components such as walls and roofs are children of the 

room node.  The names of the XML description tags 

such as wallsouth in conjunction with the values given 

in the attributes are used to identify rotations and 

translations. The wall sections and arcade sections 

become children of the wall nodes. 

Proceedings of the Ninth International Conference on Information Visualisation (IV’05) 

1550-6037/05 $20.00 © 2005 IEEE 
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore.  Restrictions apply. 



Figure 23  Wall junctions 

Currently, the compiler builds the walls of a room in 

the fashion shown in plan form on the left of Figure 23.  

This follows the style in many churches but further 

development would enable the walls to be mitred at the 

corners as shown on the right of Figure 23. 

The wall sections are drawn as <IndexedFaceSet>
nodes with vertices determined by the arch information. 

Trigonometry uses the parameters for the arches to 

generate the vertices.  The resulting shape is invariably 

concave and future work would examine how this may 

be refined to improve viewer performance.  The roofs 

and spires are also built from <IndexedFaceSet>

nodes.
The use of <IndexedFaceSet> is universal 

throughout the compiled VRML or X3D. It is intended 

that the Builder tool will provide facilities whereby the 

user can associate parts of photographs with parts of the 

walls etc and have the Builder tool build up composite 

images that would be used by the compiler to texture the 

model. 

4 Conclusions
This paper covers the initial stage of the INHERIT 

project and much work remains to create tools to allow 

school pupils to be able to add a range of objects, to a 

virtual world that models the heritage of Europe  

This paper explored how common structures such as 

churches can be divided into a set of components.  The 

data structures to store the components and their 

associated values as parameters in XML are then 

outlined and finally a system to process this data into 3D 

formats VRML or X3D has been described. 

There are a number of areas for future development 

including working with the level of detail of the models 

generated, and by default the choices offered with the 

XML Description.  The possibilities for enhancing the 

richness of the model include the use of photographic 

textures.  It is felt that ease of use for the non-expert will 

be a key aspect of the Builder tool.  Other developments 

would provide facilities for modelling the tracery and 

stained glass of the windows, the modelling of the 

vaulting, catering for steps between different levels in 

some churches and handling the embellishment of walls 

and arches. 

Further work would also be to compare a compiler 

written in Java with the C compiler used in this study.  

Java is the language of choice for Web projects and a 

comparison of the relative strengths of the two 

programming approaches should be undertaken. 

The lessons learned during this early work will 

inform into the detailed development work on the more 

general modelling tools and data structures that will 

underpin the INHERIT project. 

5 References   

APACHE XML Project, http://xml.apache.org/xerces-c/, accessed 5th 

November 2004. 

ARENDASH, D., 2004, The Unreal Editor as a Web 3D Authoring 

Environment, Proceedings of the Ninth International Conference on 

3D Web Technology, ACM Press, New York, NY, USA, ACM, 119 – 

126. 

BONNETT J. (2003) Following in Rabelais' Footsteps: Immersive 

History and the 3D Virtual Buildings Project, Journal of the 

Association for History and Computing Vol VI, Number 2. Matsushita 

Center for Electronic Learning, Pacific University, Forest Grove, 
Oregon, U.S.A. 

FARRIMOND, B. and HETHERINGTON, R., 2004,  Using 3D to 

Visualise Temporal Data, IV04, Proceedings of the Eight International 

Conference on Information Visualisation, IEEE Computer Society, Los 
Alamitos, California, 108- 117. 

FARRIMOND, B., PARKINSON, L., and POGSON F., 2003 

Modelling history with XML, DRH 2001 and 2002, OHC, London. J. 

Anderson, A. Dunning and M. Fraser Ed, 89 to 111. 

HETHERINGTON, R. and SCOTT, J. P., (2004)  Adding a Fourth 

Dimension to Three Dimensional Virtual Spaces, Proceedings of the 

Ninth International Conference on 3D Web Technology, ACM Press, 

New York, NY, USA, 163-172. 

POLYS, N. F. 2003, Stylesheet Transformations for Interactive 

Visualisation: Towards a Web3D Chemistry Curricula, Proceedings of 

the Eighth International Conference on Web3D Technology, ACM 

Siggraph, 85-90. 

TREVETT, N.  WEB3D CONSORTIUM, 2004, Web3D Consortium - 

Press Releases, 

http://www.web3d.org/news/releases/archives/000092.html, accessed 

5th November 2004 

W3C, 2004, Extensible Markup Language (XML) 1.0 (Third Edition) 

http://www.w3.org/TR/REC-xml/, accessed 5th November 2004 

WOJCIECHOWSKI, R., WALCZAK, K., WHITE, M. and 

CELLARY, W., 2004, Building Virtual and Augmented Reality 

Museum Exhibitions, Proceedings of the Ninth International 
Conference on 3D Web Technology, ACM Press, New York, NY, 

USA, 135 - 144  

WEB3D CONSORTIUM, X3D OVERVIEW,

http://www.web3d.org/x3d/overview.html, accessed 5th November 
2004 

Proceedings of the Ninth International Conference on Information Visualisation (IV’05) 

1550-6037/05 $20.00 © 2005 IEEE 
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore.  Restrictions apply. 


