Compiling 3D Models of European Heritage from User Domain XML

Brian Farrimond , Robina Hetherington
Liverpool Hope University College
{ farrimb@hope.ac.uk, hetherr@hope.ac.uk }

Abstract

Europe has a unique heritage and culture that is
largely hidden from its young people. New information
and communication technologies present an opportunity
to involve the young people of Europe in discovering this
heritage and presenting it to others in an exciting,
dynamic way.

This paper describes early work on the INHERIT
project which involves the development of a set of tools,
data and structures to build and manage historical and
three-dimensional models. This will enable school and
college students to share in creating and exploring
distributed simulations of dynamic aspects of history,
geography, economics, politics and other subjects
closely associated with European citizenship. With the
tools developed it is envisaged that school pupils will be
able to add, for example, landscape, buildings, avatars
and a range of other objects, to a virtual world that
models the heritage of Europe. The tools are based upon
XML technologies to structure and distribute data and
X3D or VRML to display that three-dimensional data.

Keywords--- Information Visualization,
Interactive 3D Graphics, X3D, XML, VRML,
Cultural Heritage.

1 Introduction

The time is now right for much wider applications of
Web3D graphics. The growth of the use of broadband
Internet connections and a significant rise in the number
of relatively low-priced computers readily available,
which can handle both the file size and rendering
requirements of 3D models, mean that 3D worlds can be
enjoyed by many.

The use of 3D is now standard in computer games
and is now an expectation of the younger generation for
computer graphics. This means that people, under the
age of say 25, have very high levels of computer literacy
and the ability to conceptualize in three-dimensions.

Proceedings of the Ninth International Conference on Information Visualisation (I\V'05) o
1550-6037/05 $2&l680@z§8dgemﬁiéjse limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore. Restrictions apply.

Many games now incorporate the ability to create or add
to three-dimensional environments. (Arendash(2004)).
However few tools exist to allow school pupils to create
models of their own environment.

The INHERIT Project seeks to develop a set of
tools, data and structures to enable school and college
students to share in creating and exploring distributed
models of their cultural heritage. INHERIT will allow
pupils (and teachers) to collaborate and communicate on-
line while exploring and interacting with the INHERIT
simulations. The 3D simulations will be built within the
context of a collaborative environment enabled by the
Internet. The tools are intended to be simple to use
enabling students to generate rapidly 3D representations
of specific historic events or environments. This paper
describes early work in developing the data structures
that will underlie these tools.

Churches were chosen as an initial subject of
investigation for modelling. Every settlement across
Europe has a church. It is usually the oldest building in
the settlement and contains much of the local cultural
heritage. The older, Gothic churches were also built
according to quite strict rules. Whilst each individual
church will have its own individual elements, it will be
built up of a standard set of components, such as a nave,
tower, transepts. These rules mean that the structure can
be componentized and the individual characteristics can
be stored as parameters. For instance a tower can be
round or square, it can be topped with a steeple or roof,
and it can be given dimensions.

The set of tools described are built using XML
(eXtensible Markup Language) technologies. XML has
been designed to meet the challenges of large-scale
electronic publishing. XML’s design goals, as set out by
the W3C (2004) make it ideal for storing the components
of historical structures and their parameters. The XML
file is easy to create and can be processed for display
over the Internet. The display of the object is with X3D
(eXtensible 3D) or VRML (Virtual Reality Modelling
Language). X3D, an application of XML, has recently
received ISO International approval, is the new standard
designed to enable real-time communication of 3D data,

in particular over the Internet. (Trevett (2004)).
However, as X3D is still relatively new and browser
plugins are still in development and are not as widely
used as VRML plugins, the XML data is also translated
into VRML.

The objectives of this initial stage of the INHERIT
project are:

e To develop a system to subdivide common
structures such as churches into a set of
components

e To develop a data structure to store the
components and their associated values as
parameters

e To develop a system to process this data into
3D formats, VRML or X3D.

This paper first outlines related work in the field of
XML technologies and 3D objects and how 3D is being
used to enhance and reinforce learning experiences. It
then explains the rationale behind the XML technologies
used in INHERIT and how they have been applied to the
generation of models of churches. The data structures
for these buildings are described. Finally conclusions are
drawn as to future developments of the building tool.

2 Related Work

In the education field there a number of approaches
to the application of XML technologies in the generation
of three-dimensional representations of real life objects.
Polys (2003) has applied XSLT (eXtensible Stylesheet
Transformations) technologies to create multiple
visualizations of the same data. He used data structured
in CML (Chemical Markup Language) as the source of
molecular information to generate the visualizations. He
demonstrated that a highly structured format, CML,
provides a format for the conversion and sharing of data
files.

SO AEIFIEEHD [e -]

Figure 1 - 2D Time Map: Railways and Churches

Farrimond et al (2003) have demonstrated the use of
XML based Time Maps to allow the presentation of a

Proceedings of the Ninth International Conference on Information Visualisation (I\V'05) o
1550-6037/05 $2&l680@z§8dgemﬁiéjse limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore. Restrictions apply.

sequence of events in spatial context (Figure 1). This
work enabled historical events, economic and political
activities and other developments to be modelled and
studied in a static and relatively non-interactive fashion
across the World Wide Web. These 2-d simulations
were developed and tested by a number of University
students.

The Time Map work involved the use of historical
data contained within XML with objects stored with time
stamped attributes such as position, size, political
control. These attributes were then displayed in the
generated display to indicate different times or states of
the event or object. For instance the various stages of
construction of the railway shown in Figure 1 are
displayed in different colours. Further Time Map work
used XSL (Extensible Stylesheet Language) to generate
VRML from the XML. (Farrimond et al. 2004) This
work develops the use of XML to contain data but
explores alternative technologies to process the XML.

Hetherington et al (2004) have demonstrated the use
of XML and X3D technologies to integrate temporal data
within X3D models and display buildings in various
states or times accompanied by historical data. XML
technologies were applied to structure the data or model
file, in order that it could be filtered and displayed
according to different criteria, in their case, time periods.

The 3D Virtual Buildings Project described by
Bonnett (2003) enables students to generate
representations of historic settlements using 3D
modelling software; to explore how multiple methods of
knowledge representation could be used to enhance
student learning outcomes; and more specifically, to
determine how 3D, and the process of 3D model
construction, used in conjunction with text, could help
students to realize a fundamental point, that historical
representations are models, models that must be
distinguished from the objects they purport to represent.

Wojciechowski et al (2004) have demonstrated a
system to enable museums to build and manage virtual
exhibitions of artifacts through X-VRML, a high level
XML-based language. The X-VRML language applies
the concept of parameterization of scenes to generate
three-dimensional representations of objects within a
virtual museum. The parameters can define elements of
the scene such as for instance wall coverings. The
ARCO system was developed to enable the exploration
of museum artifacts by different audiences, in particular
children, enabling museum staff to build interactive
learning presentations.

Whilst the use of 3D to represent objects to students
in an interactive manner to encourage them to engage
and explore these objects in a meaningful way is
important, the main objective of INHERIT is to develop
a tool which will enable school pupils to create models
of their own environment. Underpinning the INHERIT

Project is a belief that modelling real world entities (such
as individual buildings in the micro-scale or urban
systems in the macro-scale) compels the modeller to look
at the modelled entity with a different level of intensity.

Arendash (2004) applies a Game technology, Unreal
Editor, to enable non specialist modelers to generate their
own 3D environments. He demonstrates that anyone, as
opposed to a specialist modeller using an expensive 3D
development tool such as Maya or 3ds max, can create
“rich, compelling and very lively 3D experiences”. This
paper explores the data structures necessary to treat a
building, such as a church, as a collection or assembly of
components. The next stage will be to apply a user
interface that is intuitive and engaging for school pupils
to use, learning from Game technology.

3 Inherit System Overview

The aim of component-based modelling is to
provide descriptions of artifacts expressed in terms of
their components that can be used to generate
visualisations in 3D languages such as VRML and X3D.
This is analogous to general programming principles in
which coding is expressed in terms that are problem
based and paradigm based. For example, Fortran
scientific programs are expressed in terms scientists and
engineers understand that are relevant to the problems
they are trying to solve. Equally, programming
languages in the object oriented paradigm enable
developers to think and express themselves in terms of
classes and objects. In both cases the nature of the
underlying hardware is hidden and the developer does
not need to understand it. Also, migration of a program
to a new host is feasible if the appropriate compilers are
available. This paper aims to demonstrate how the same
principle can be applied to 3D modelling. The XML
descriptions created by the user are expressed in terms
the user understands and are related to the building they
are trying to model. The XML descriptions are the
translated into the target 3D language automatically by
compilers. The user does not need to understand the 3D
language. As new visualisation languages become
available, new compilers can be developed that are used
to translate the descriptions into the new language.

A benefit of this approach is that if the compiler is
client side, the server need only serve the user's
description to the client. The client compiles the
visualisation and displays it. Generally, description files
are much smaller than the equivalent VRML or X3D.
This is equivalent to the X3D <Sphere> being able to
specify the equivalent of an <IndexedFaceSet> with a
large number of vertices. For instance the XML file for
the simple church illustrated in Figure 2.is 11Kb in size,
once compiled into a 3D model file it is 49 Kb and this is
for a model with simple geometries; once applied to a

Proceedings of the Ninth International Conference on Information Visualisation (I\V'05) o
1550-6037/05 $2&l&80@z§8dgemﬁiéjse limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore. Restrictions apply.

structure with complex geometries, such as curves, much
greater compression ratios can be achieved. The model
shown in Figure 20 has an XML Description file size of
50 Kb and a model file of 388 Kb.

Chancel
- Tower —
.
® [/~ g
a7 \
<f— Side aisle
< Nave

Figure 2 Plan and model illustrating the
standard church components

Finally the description provides a natural storage
mechanism for all kinds of information about the artifact
including photographs, sounds, text and links to web
resources. The compiler only uses the relevant part of
the description but may be extended to make use of this
other information, especially if it is attached to particular
components.

Component-based modelling depends upon an
analysis of real artifacts, identifying components of those
artifacts that have a common underlying structure
customised by parameters. Traditional 3D modelling
will, for example, use a <Box> node customised by
giving specific values for its length, breadth and height.
European churches and cathedrals of the Romanesque
and Gothic types form a suitable vehicle for such
analysis. These buildings conform to a number of
standard design features, for example all such churches
have a nave, many have chancels, some have transepts
and side aisles, towers and spires, see Figure 2. The
orientation and positioning of these components are
standard across Europe. The nave is aligned west-east,
the chancel is at the east end of the nave with the same
orientation, transepts are aligned north or south from the
nave or chancel. Side aisles extend nave, chancel and
transepts along their edges. Towers are placed at a
number of places within this layout such as at the
crossing of the nave and transepts, and on either side of
the west end of the nave. Some churches do not follow
this east west alignment but descriptions of these
buildings refer to the alignment as being based on the
"liturgical east".

3.1 Analysing church structure as a set of
rooms

In our work, analysis of the architectural style of
traditional English churches reveals that their major
components can be classified as variations of an
underlying type which we call the room. The nave,
chancel, transepts and towers can all be regarded as room
type objects although in the XML, the user does not use
the term room explicitly. Instead, the XML uses terms
for the components that are meaningful in the context of
churches: nave, chancel etc. The room comes into play
when the XML is analysed and transformed by the
compiler as described below. It is intended that the
values of the XML attributes used to parameterise the
components should be measurable from plans,
photographs and on-site measurements using tape
measures.

The XML description of a church building that
identifies its major rooms is given in Figure 3

In the case of the squaretower, chancel and
nave, length is west-east and breadth is south-north.
In the <case of the northtransepts and
southtransepts, length is south-north and breadth
is west-east. These can be assumed because of the
standard layout of these churches as explained above.

Other types of room will be added as the project
develops. These include porches, Lady Chapels and
Galilee chapels as at Durham Cathedral and polygonal
plan chancels such as at Gloucester and Norwich
cathedrals.

The description of a nave as an example of a room
in terms of its sub-components is given in Figure 4.

<building name="testl.xml" units="feet">
<church>
<squaretower length="18" breadth="22"
astdisp="-18" northdisp="0">
</squaretower>

<nave length="62" breadth="22"
eastdisp="0" northdisp="0">

</nave>

<chancel length="40" breadth="18"
eastdisp="62" northdisp="0">

</chancel >

<southtransept length="40" breadth="18"
eastdisp="50" northdisp="-11">

</southtransept>

<northtransept length="40" breadth="18"
eastdisp="20" northdisp="11">

</northtransept>

</church>
</building>

<nave length="62" breadth="22" eastdisp="0" northdisp="0">
<roofsouth roofthickness="0.5" apexheight="48.4"
baseheight="38.3" horizontalprojection="11"
baselength="60" leftapexprojection="0"
rightapexprojection="0" />

<roofnorth roofthickness="0.5" apexheight="48.4"
baseheight="38.3" horizontalprojection="11"
baselength="60" leftapexprojection="0"
rightapexprojection="0" />

<wallwest basewallthickness="1" leftheight="40"
rightheight="40" apexheight="50.1"
type="gable">

</wallwest>

<wallsouth basewallthickness="3" leftheight="38.3"
rightheight="38.3" type="rectangular">

</wallsouth>

<wallnorth basewallthickness="3" leftheight="38.3"
rightheight="38.3" type="rectangular">

</wallnorth>

<sideaislenorth length="17" leftoffset="1" breadth="15"
roofthickness="0.5" isfullgable="false">

</sideaislencorth>

<walleast basewallthickness="1" leftheight="40"
rightheight="40" apexheight="50.1"
type="gable">

</walleast>
</naves>

Figure 3 The XML description of a church
building that identifies its major rooms

Proceedings of the Ninth International Conference on Information Visualisation (I\V'05) o
1550-6037/05 $2&l680@z§8dgemﬁiéjse limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore. Restrictions apply.

Figure 4 An example of a room in terms of its
sub-components

3.2 Roofs

Roofs are located on each of the four edges of the
room: north, south, east and west. The roofs rise from
the room's wall to an apex. At present, roofs are base
components with no further sub-division. Hence the
element has attributes but no sub-elements. In general,
the roof is a 2-D plane with a thickness specified by the
roofthickness attribute. It is regarded as having its
upper edge horizontal at a height above the ground given
by apexheight. Its lower edge is also horizontal at a
height given by baseheight. The other attributes
provide the opportunity to have the upper edge longer or

shorter than the lower edge to represent, for example,
two roofs meeting at right angles along a common
guttering as shown below in Figure 5

Figure 5 Showing a detail of a model with two
roofs meeting at right angles

3.3 Walls

A room may have walls along each of its edges:
north, south, east and west. The wall attributes identify
the ground plan thickness through the
basewallthickness attribute. They also provide for
walls whose top edges slope rather than are horizontal.
Two main types of wall are identified through the type
attribute. These are gable and rectangular. The
rectangular type may be rectilinear or trapezoidal as
shown in Figure 6.

\\\\
\\\\
Rectilinear Trapezoid
Rectangular
i \\
ol sl apex \\\
Wall t es|
P Gable

Figure 6 Wall types

A gable wall has an apex somewhere along its top
edge as shown in Figure 6

Walls are more complex components than roofs and
have a number of sub-components. These are currently:
wallsection, arcadesection and buttress. An
example is given in Figure 7. The wall is considered as a

Proceedings of the Ninth International Conference on Information Visualisation (I\V'05) o
1550-6037/05 $2&l680@z§8dgemﬁiéjse limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore. Restrictions apply.

number of wall sections and arcade sections stacked on
top of each other. The id attribute determines the
stacking order.

<wallsouth basewallthickness="3" leftheight="38.3"
rightheight="38.3" type="rectangular">
<arcadesection id="0">
<wallsection id="0" type="rectangular"
wallthickness="3" leftheight="33"
rightheight="33" >

</wallsection>

<colum id="0" leftoffset="3.5" type="cylinder"
h="10" r="1.5" />

<colum id="1" leftoffset="21.5" type="cylinder"
h="10" r="1.5" />

</arcadesection>

<wallsection id="1" type="rectangular"
wallthickness="2" leftheight="5.3"
rightheight="5.3">

</wallsection>

<buttress id="0" centreoffset="1" angleframormal="45">

</buttress>

<buttress id="1" centreoffset="21">

</buttress>
</wallsouth>

Figure 7 XML fragment containing wall sub-
components

wallsection: each wall section has its own
thickness. ~ Optional wall section attributes enable
sections to project over adjacent wall sections. Each
wall section may contain arches and windows - see
below.

arcadesections: an arcade section consists of a
wall section plus any number of columns. The
leftoffset attribute for a column determines the
position of the column relative to the left hand edge of
the wall section as seen when facing the wall length.

buttresses: a buttress is placed along the wall at a
distance from the left edge of the wall determined by the
centreoffset attribute. The optional
anglefromnormal attribute determines the angle in
degrees from the normal to the owning wall. Most
buttresses have an anglefromnormal of 0. Buttresses
at corners are often at 45 degrees to the normal as shown
in Figure 8.

The buttress is built up from sections just as the wall
is built up from sections as shown in Figure 10. Each
section has parameterised knee, hip heights and depths.
The plan of the sections is currently rectangular.

3.4 Arches

Arches are specified as part of a wall section. The
arch attributes identify the distance of the arch from the
left end of the wall section, the height of the base of each
side of the arch (which may rest on the top of columns)
and measurements that enable the profile of the arch to
be determined. These measurements for the left side of
the arch are illustrated in Figure 11.

height

Figure 8 Detail of a buttress at a corner

A complex buttress can be created by stacking
sections and by choice of knee and hip depth and heights.
Figure 10 illustrates how two sections are stacked to
form a buttress. Figure 9 shows the corresponding XML.

Figure 11 Measurements for the left side of an

arch
<buttress id="0" centreoffset="2"> Measurements for the right side of the arch are also
Jouttresssection id="0" width="2n recorded in attributes. The profile of the arch cross

heightback="10" depthhip="1.7" . . o
heighthip-"10" depthlnee—"2.5" .sectl.on is specified by using indents and offsets as shown
heightknee="9" depthbase="3.0" /> in Figure 12.

<outtresssection id="1" width="2"
heightback="15" depthhip="1.7"

heighthip="14" depthknee="1.7" <archid = "O" leftoffset = "6" leftfootheight = "0O"
heightknee="14" depthbase="1.7" rightfootheight = "0"
/ . cl = "15" wl = "5" dl = "1v
> 3 n n
</buttress> height = "28
cr = "15" wr = "5" dr = "1"
. L . insetfront = "0.2, 0.5, 0.8, 1.2"
Figure 9 The XML description of a two section indentfront = "0.2, 0.3, 0.4, 0.8 "
buttress insetback = "0.2, 0.5, 0.8, 1.2"
indentback = "0.2, 0.3, 0.4, 0.8"/>
N -
N Figure 12 XML for an arch
The corresponding cross section is shown in Figure
Knee 13.
Section2
indent
inset
Base
\\
\J/
Section of a buttress A buttress composed of 2 sections

Figure 13 Cross section of an arch
Figure 10 Building a buttress

Proceedings of the Ninth International Conference on Information Visualisation (I\V'05) o
1550-6037/05 $2&ﬂac®z§8dgemﬁjse limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore. Restrictions apply.

The cross section of the soffit is given by inset and
indent pairs, insetfront and insetback, where inset
is the distance from the outer arch towards the centre of
curvature while indent is the horizontal distance into the
wall from its outer surface. The front and back of the
arch are specified separately. The effect of the
description is shown in Figure 14.

While this meets the needs of many architectural
styles, further work is needed to describe successfully
more elaborate cross sections that make use of rounded
moulding.

Figure 14 Model of an arch

Thus in the photo in Figure 15 showing an arch in
the transept of Wenlock Priory, the upper section can be
described with insets and indents. However, the lower
section with its rounded moulding requires a different
approach that has yet to be implemented.

Figure 15 Photograph of an arch in the transept
of Wenlock Priory

3.5 Windows

A window is seen as having an arch as a sub-
component. Figure 16 gives the XML for a window.
Circular or rose windows have yet to be implemented.

<window id="0" sillheight="1">
<arch id="0" leftoffset="41" leftfootheight="0"
rightfootheight="0"
c1=ll2" w1="l" dl="0.2ll }'leigrlt="4.5ll
CI\=lI2" m"l" dI\="0.2" />
</window>

Figure 16 XML code for a window

3.6 Side aisles

A side aisle can be attached to any wall of a
squaretower, nave, chancel or transept. The
offset from the left end of the wall is specified by an
attribute. Sub-components of a sideaisle can include
walls and roofs.

3.7 Spires

A square tower may be surmounted by a spire.
Figure 17 gives the specification of an octagonal corned
spire.

<spire 1d="0" type="octagonalcormered" baseheight="92.7"
length="18" breadth="18" height="50"
wallthickness="2" cornerslopeheight="10">
</spire>

Figure 17 The specification of an octagonal
corned spire

The cornerslopeheight gives the distance up the
slope of the apex of the corner triangle as illustrated in
Figure 18.

cornerslopeheight

Figure 18 Detail of the junction of an octagonal
spire and a square tower

This section has covered the data structures used to
build the models, examples of which can be seen in
Figure 19 and Figure 20. As can be seen some quite
complex and varied forms can be created using this
technique.

Proceedings of the Ninth International Conference on Information Visualisation (I\V'05) o
1550-6037/05 $26\%O@z§865eiﬁﬁjse limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore. Restrictions apply.

Figure 19 Interior of a model of typical gothic
church architecture

Figure 20 Exterior of a model of typical gothic
church architecture

3.8 The development environment

XML Description. This description can then be
compiled to generate X3D or VRML as illustrated in
Figure 21.

So far the work has concentrated on the compiler
section of the system to prove the concept. The XML
Description is edited using Notepad++ and CookTop.

3.9 The compiler

The compiler is written in C, making use of the
Xerces C++ validating XML Parser (Apache XML
Project). Earlier work by Polys (2003), Farrimond et al
(2004) and Hetherington et al (2004) all used XSL
technologies to transform or parse XML data. However,
after initial consideration to use XSL to transform the
XML Description into X3D or VRML, it soon became
apparent that the mathematical processing required to
generate the 3D models was too complex to achieve with
XSL. C proved to be a more satisfactory choice while
proving the concept.

Having read and parsed the XML Description, the
compiler walks through the resulting DOM data structure
generating its own internal representation based upon a
C++ ROOM data structure shown in Figure 22. The
compiler has analysed the XML description into types of
room.

XML Description

Component Library X3D VRML

typedef struct {
double eastdisp;
double northdisp;
double length;
double breadth;
ool hasspire;
SPIRE spire;
bool hasroof [4] ;
ROOF roof [4] ;
bool haswall [4] ;
WALL walll[4];
bool hassideaisle[4] ;
SIDEAISLE sideaislel[4];
} ROOM;

Figure 21 Diagram of the compiler process

The strategy of the project is to enable a user to
create a description graphically from components
provided in a Component Library. The approach will be
similar to most graphical editing tools except that the
components will not be abstract entities such as lines,
circles, spheres and boxes but will be representations of
real world objects. The description will be stored as an

Proceedings of the Ninth International Conference on Information Visualisation (I\V'05) o
1550-6037/05 $26l&6c@z§8dgemﬁ15e limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore. Restrictions apply.

Figure 22 Data structure for ROOM used in
internal representation

The SPIRE, ROOF, WALL and SIDEAISLE data
types have equivalent structures.

The compiler then uses the internal representation to
generate the VRML or X3D output. The structured
nature of the XML Description lends itself to mapping
onto the structured nature of VRML and X3D. The
room becomes a <Transform> node and the room sub-
components such as walls and roofs are children of the
room node. The names of the XML description tags
such as wallsouth in conjunction with the values given
in the attributes are used to identify rotations and
translations. The wall sections and arcade sections
become children of the wall nodes.

Figure 23 Wall junctions

Currently, the compiler builds the walls of a room in
the fashion shown in plan form on the left of Figure 23.
This follows the style in many churches but further
development would enable the walls to be mitred at the
corners as shown on the right of Figure 23.

The wall sections are drawn as <IndexedFaceSet>
nodes with vertices determined by the arch information.
Trigonometry uses the parameters for the arches to
generate the vertices. The resulting shape is invariably
concave and future work would examine how this may
be refined to improve viewer performance. The roofs
and spires are also built from <IndexedFaceSet>
nodes.

The use of <IndexedFaceSet> is universal
throughout the compiled VRML or X3D. It is intended
that the Builder tool will provide facilities whereby the
user can associate parts of photographs with parts of the
walls etc and have the Builder tool build up composite
images that would be used by the compiler to texture the
model.

4 Conclusions

This paper covers the initial stage of the INHERIT
project and much work remains to create tools to allow
school pupils to be able to add a range of objects, to a
virtual world that models the heritage of Europe

This paper explored how common structures such as
churches can be divided into a set of components. The
data structures to store the components and their
associated values as parameters in XML are then
outlined and finally a system to process this data into 3D
formats VRML or X3D has been described.

There are a number of areas for future development
including working with the level of detail of the models
generated, and by default the choices offered with the
XML Description. The possibilities for enhancing the
richness of the model include the use of photographic
textures. It is felt that ease of use for the non-expert will
be a key aspect of the Builder tool. Other developments
would provide facilities for modelling the tracery and
stained glass of the windows, the modelling of the
vaulting, catering for steps between different levels in
some churches and handling the embellishment of walls
and arches.

Proceedings of the Ninth International Conference on Information Visualisation (I\V'05) o
1550-6037/05 $2&l680@z§8dgemﬁiéjse limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:51:37 UTC from IEEE Xplore. Restrictions apply.

Further work would also be to compare a compiler
written in Java with the C compiler used in this study.
Java is the language of choice for Web projects and a
comparison of the relative strengths of the two
programming approaches should be undertaken.

The lessons learned during this early work will
inform into the detailed development work on the more
general modelling tools and data structures that will
underpin the INHERIT project.

5 References

APACHE XML Project, http://xml.apache.org/xerces-c/, accessed Sth
November 2004.

ARENDASH, D., 2004, The Unreal Editor as a Web 3D Authoring
Environment, Proceedings of the Ninth International Conference on
3D Web Technology, ACM Press, New York, NY, USA, ACM, 119 —
126.

BONNETT J. (2003) Following in Rabelais' Footsteps: Immersive
History and the 3D Virtual Buildings Project, Journal of the
Association for History and Computing Vol VI, Number 2. Matsushita
Center for Electronic Learning, Pacific University, Forest Grove,
Oregon, U.S.A.

FARRIMOND, B. and HETHERINGTON, R., 2004, Using 3D to
Visualise Temporal Data, IV04, Proceedings of the Eight International
Conference on Information Visualisation, IEEE Computer Society, Los
Alamitos, California, 108- 117.

FARRIMOND, B., PARKINSON, L., and POGSON F., 2003
Modelling history with XML, DRH 2001 and 2002, OHC, London. J.
Anderson, A. Dunning and M. Fraser Ed, 89 to 111.

HETHERINGTON, R. and SCOTT, J. P., (2004) Adding a Fourth
Dimension to Three Dimensional Virtual Spaces, Proceedings of the
Ninth International Conference on 3D Web Technology, ACM Press,
New York, NY, USA, 163-172.

POLYS, N. F. 2003, Stylesheet Transformations for Interactive
Visualisation: Towards a Web3D Chemistry Curricula, Proceedings of
the Eighth International Conference on Web3D Technology, ACM
Siggraph, 85-90.

TREVETT, N. WEB3D CONSORTIUM, 2004, Web3D Consortium -
Press Releases,
http://www.web3d.org/news/releases/archives/000092.html, accessed
5th November 2004

W3C, 2004, Extensible Markup Language (XML) 1.0 (Third Edition)
http://'www.w3.org/TR/REC-xml/, accessed 5th November 2004

WOJCIECHOWSKI, R., WALCZAK, K. WHITE, M. and
CELLARY, W., 2004, Building Virtual and Augmented Reality
Museum Exhibitions, Proceedings of the Ninth International
Conference on 3D Web Technology, ACM Press, New York, NY,
USA, 135 - 144

WEB3D CONSORTIUM, X3D OVERVIEW,
http://www.web3d.org/x3d/overview.html, accessed 5th November
2004

