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Abstract—Digitalization of three-dimensional (3-D) objects and scenes using modern
depth sensors and high-resolution RGB cameras enables the preservation of human
cultural artifacts at an unprecedented level of detail. Interactive visualization of these
large datasets, however, is challenging without degradation in visual fidelity. A common
solution is to fit the dataset into available video memory by downsampling and
compression. The achievable reproduction accuracy is thereby limited for interactive
scenarios, such as immersive exploration in virtual reality (VR). This degradation in visual
realism ultimately hinders the effective communication of human cultural knowledge.
This article presents a method to render 3-D scan datasets with minimal loss of visual
fidelity. A point-based rendering approach visualizes scan data as a dense splat cloud. For
improved surface approximation of thin and sparsely sampled objects, we propose
oriented 3-D ellipsoids as rendering primitives. To render massive texture datasets, we
present a virtual texturing system that dynamically loads required image data. It is paired
with a single-pass page prediction method that minimizes visible texturing artifacts. Our
system renders a challenging dataset in the order of 70 million points and a texture size of
1.2 TB consistently at 90 frames per second in stereoscopic VR.

M DiciTaL PRESERVATION and restoration of cul-
tural artifacts is an integral component to the
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recording of human history. Virtual replicas of
historical sites can serve different purposes.
They enable archiving of geometry and texture,
such that faithful reproduction is possible in the
case of decay, destruction, or vandalism. Digital
models furthermore broaden the availability of
cultural property. Travel distance, admission
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charges, lack of accessibility, or the necessity for
site protection can deny many individuals the
opportunity to experience our cultural treasures.

Digital acquisition of high-precision three-
dimensional (3-D) models can nowadays be per-
formed in numerous ways. Using specialized
equipment such as 3-D laser scanners, struc-
tured light or time-of-flight sensors, or by the
fusion of multiview image data in photogramme-
try, highly detailed digital reconstructions of
real-world objects are achievable. The affordabil-
ity of sensors combined with ever-increasing
data capacity and transmission bandwidth ena-
bles us to capture, store, and exchange 3-D
scanned datasets of enormous size.

Heritage preservation, however, comprises
more than just archiving an artifact’s appear-
ance. Ideally, we want to enable observers to
experience a historic site as realistically as pos-
sible, given the sensor resolution at which the
object was captured. People should be able to
engage in the virtualized environment and per-
ceive their surroundings in the same way as if
visiting the real site.

Virtual reality (VR) offers the potential to cre-
ate this sense of presence in immersive virtual
environments (IVE). Yet, while VR systems have
recently become affordable, requirements on
rendering performance are still demanding. For a
sufficient degree of immersion, the system needs
to deliver high interactive frame rates at all times.
This is challenging, particularly for datasets that
do not fit into video memory. Downsampling and
compression combined with dynamic level-of-
detail (LOD) techniques can alleviate this, but
typically result in decreased visual fidelity.

For exploration of 3-D scanned heritage sites
in IVEs, we argue that perceivable losses in
reproduction quality are not tolerable. The
inability to faithfully reproduce an artifact at
interactive frame rates ultimately amounts to a
loss of cultural heritage. Our main goal is, there-
fore, to create a rendering technique that yields
the highest visual quality, while rendering mas-
sive point cloud datasets at interactive frame
rates. To this end, we propose a point-based ren-
dering system using 3-D ellipsoids as a novel ren-
dering primitive.

We furthermore observe that users in
IVEs have the unique possibility to approach

artifacts very closely. While many cultural her-
itage sites are not fully open to the public, a
digital model enables users to explore freely.
Even for high-quality photographs, the achiev-
able resolution from a given distance might
be insufficient. Therefore, we apply a data-
driven super-resolution technique to improve
the effective texture resolution by adding
plausible detail.

Increasing the effective texture resolution,
however, significantly aggravates the problem of
insufficient GPU memory. Consequently, we pro-
pose a virtual texturing system that performs
on-demand loading of image data at full resolu-
tion, while minimizing visible artifacts with an
efficient prediction algorithm for required virtual
texture pages.

In summary, our main contributions are:

+ 3-D ellipsoids as improved point rendering
primitives for thin and sparsely sampled
objects (see the “Ellipsoid Splatting” section);

+ virtual texturing for massive image data
(see the “Virtual Texturing” section);

+ a single-pass page prediction algorithm
(see the “Page Prediction” section).

RELATED WORK

Our proposed method draws heavily on prior
research in point-based rendering techniques
and methods to handle large-scale texture data-
sets. This section gives an overview of related
work in those fields.

Point-Based Rendering

While many applications require a mesh repre-
sentation with topological surface information,
visual reproduction alone does not benefit from it.
Points can instead be used directly for rendering,
saving manual and computational effort. Levoy
and Whitted introduced the idea of using points
as rendering primitives.! While naive point cloud
rendering as colored points or viewer-aligned
quads is simple to implement and yields high per-
formance, it can result in visual gaps and aliasing
artifacts. Pfister et al. proposed surfels (surface
elements) as improved rendering primitives that
approximate the local surface with oriented discs
in 3D space? Zwicker et al created the
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Surface Splatting technique that renders surfels in
a high-quality manner on the CPU using screen
space elliptical weighted average (EWA) texture
filtering.®> Botsch et al. further improved the ren-
dering quality with Phong Splatting that associates
a linearly varying normal field with each primi-
tive.? The method was subsequently implemented
using capabilities of modern graphics program-
ming units and a cheap but effective approxima-
tion of EWA texture filtering.”> To render sharp
features, Zwicker et al. proposed the use of cli-
plines that truncate splats along a line in tangent
space.® Preiner et al. developed Auto Splats that
computes normals and splat radii in screen space
during rendering.”

Large-Scale Texturing

Much interest in methods to handle the ever-
increasing size of texture data has originated in
the visualization of large geospatial datasets as
well as in the gaming industry.

Texture Streaming Streaming approaches
keep only the textures or mipmaps required for
rendering in memory at a given point in time. The
main challenge is to determine when to load
which textures. A simple approach is to subdi-
vide the scene into fixed zones in which the
required set of textures is precomputed. By keep-
ing track of neighboring zones, textures can be
streamed into memory before they are needed
for rendering. Blow presented a system that
tracks mipmap levels in a least-recently-used
(LRU) cache and predicts required textures using
a mip bias and extrapolated camera movement.®
Dumont et al. prioritized textures based on per-
ceptual importance, using factors such as view
point, illumination, image contrast and frequency
content.” Van Waveren proposed a multithreaded
streaming method that loads compressed images
from disk and recompresses them using a GPU
format.'” Barb presented a method that weights
mip levels by importance based on the covered
screen space when rendered from a probe’s
position.!!

Clipmaps Streaming whole mipmap levels can
still require too much memory, which is often
encountered when visualizing aerial scanned ter-
rain data. Such datasets are typically rendered
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with a fixed-perspective viewport that shows a
rectangular section of the dataset. Tanner et al.
propose clipmaps that keep only a fixed-size
clipping area in memory.12 While the original
implementation relies on specialized hardware,
Makarov describes how to implement clipmaps
on commodity hardware using array textures.'®
While clipmaps work well for geographic visuali-
zation applications, they are not suited for gen-
eral scenes since only a single contiguous region
of data is kept in memory.

Virtual Texturing A generalization of clip-
maps and texture streaming is virtual texturing.
Similar to virtualized memory in modern operat-
ing systems, textures are partitioned into fixed-
size pages and stored in a page pool. Accesses
are mapped via an indirection table that trans-
lates virtual into physical texture coordinates on
a per-page basis.

Lefebvre et al. propose a virtual texturing
system that marks required pages by rendering
texture coordinates into a framebuffer that
maps each fragment to a page.!* Van Weveren
describes virtual texturing in the game engine
id Tech 5 that determines required pages by ren-
dering the scene itself into a framebuffer and
reduces visible LOD popping by fading in newly
loaded mipmaps.'>!® Mittring et al. investigate
streaming from slow storage devices and efficient
page pool updates.!” Hollemeersch et al. propose
GPU computing for performance improvements
such as flattening the page ID buffer to reduce the
transfer time, or device-side updating of the indi-
rection table.'®

Contemporary GPU architectures support
virtualized resources that are not limited to 2-D
textures, but support 1-D textures, cubemaps,
volume textures, and general buffers. The indi-
rection tables are opaquely implemented in
hardware, which makes texture accesses much
simpler and removes the need for an additional
texture fetch.'® Our proposed method leverages
hardware support for virtual texturing using the
Vulkan graphics library.

ELLIPSOID SPLATTING
Planar splats approximate locally flat surfa-

ces well. Sparsely sampled, long and thin
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objects, however, are challenging to represent
with existing point-based rendering primitives.
Discs and ellipses struggle to approximate high
local curvature because of their 2-D nature. To
render such objects, a large amount of sample
points from several viewing angles is required,
which is prohibitive considering the small con-
tribution to the overall scene. To address this
issue, we propose 3-D ellipsoids as a novel point-
based rendering primitive for improved surface
approximation. The piecewise quadratic surface
elements reproduce high-curvature objects with
much fewer sample points and significantly
improve their visual quality.

Fitting Ellipsoids to Point Cloud Data

To better approximate surfaces, we fit an
ellipsoid to the local neighborhood of each point
in a preprocessing step. This involves finding
the ellipsoid’s center ¢ and three axes u,v,w,
which we determine as the axes of maximum var-
iation of a principal component analysis.’

Let P be a set of sufficiently dense sample
points of a surface S. For each point p, € P, the
algorithm for computing the axes of an ellipsoid
comprises the following steps.

1) Find the neighborhood N = {p,,...
2) Compute themeanp =1%"" p.
3) Compute the covariance matrix C of N.
4) Compute the eigenvalues \; and

the eigenvectors e; of C.

7pn}'

Common approaches to define the neighbor-
hood are to use the k-nearest neighbors (£-NN)
or all points within a certain radius ¢. The ad-
vantage of the A-NN method is that exactly k&
points are in the resulting set. However, outliers
can be included in the set if not enough
points are in close proximity. We choose to
first include all points in the e-neighborhood for
a predefined . If fewer than N,;, points are in
the set, we inspect the A-NN set for k= Npy,.
Points are classified as outliers and removed
from the set if their distance to p; is larger than
8 > e. If the resulting number of points n satis-
fies Nyuiier <n < Npin, the E-NN set of Ny,
points is used, otherwise p, is discarded. This
procedure yielded robust results with the param-
eters ¢ =10.02, § =0.06, Nuyin =6, Nowtier = 3,

where ¢ and § depend on the dataset scale and
average sampling density.
The covariance matrix is then computed as

C=—>> (p.—pP)p;—P)

n_lizl

1 L T

and can be interpreted as a transformation of the
unit sphere to an ellipsoid that matches the
shape of the data distribution. This symmetric
positive definite matrix can be factorized as
C=U3U", where ¥ = diag(\;, A2, \3) contains
the eigenvalues of Cand U=[u; u, wuz]is a
rotation matrix. The eigenvalues of X corre-
spond to the variance o® along each axis. We
choose the axes as u=3vA\u, v=3vV\uy,
w = 3/\3u3 to contain 99.7% of the points along
each axis inside the ellipsoid.

Rendering

Our method for rendering ellipsoids improves
the quadrics splatting method presented by Sigg
et al®' by perspectively correct projective tex-
ture mapping using photographs taken from 3-D
scanner positions. We furthermore improve ren-
dering performance by utilizing geometry shad-
ers for primitive instantiation.

The authors define T as the variance matrix that
transforms from parameter space to object space.
In parameter space, the ellipsoid becomes the unit
sphere, which can be exploited for rendering. The
matrix T is defined in terms of the three basis
vectors u, v, w and the ellipsoid center c as

u v w ¢
T_<0001>'

As with all splatting techniques, geometric primi-
tives need to be rendered to trigger the fragment
shader for the respective area of the frame-
buffer. One way of doing this is to render a quad
with UV coordinates (u,v) ranging from (-1, —1)
to (1,1). The shader then discards all fragments
for which u? +v* > 1 and, thus, lie outside of
the ellipsoid’s projection. The quad needs to
face the camera and be sized such that it acts as
a bounding box of the ellipsoid. This can be
achieved by first computing the basis vectors x,
y and the offset z of the camera-facing quad in
parameter space as
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where V and M are the view and model matrix.
The quad vertices in parameter space can then
be transformed to object space for rendering as

v; = T(wix + vy + 2).

Applying z as an offset in parameter space
moves the quad toward the camera such that the
depth of the fragments of the quad serve as a lower
bound for the depth of the ellipsoid. Compared to
positioning the quad at the center of the ellipsoid,
this reduces depth misordering when ellipsoids of
different sizes overlap in screen space.

One of the most performance-critical parts
when rendering a large number of splats is ver-
tex processing. To improve the performance, we
draw a single triangle instead of a quad, with the
following UV coordinates:

a=[-v3 2] b=l 2 e=[v3 1]

These coordinates form an equilateral triangle
with an edge length of 2/3 that circumscribes
the unit circle. This optimization works for disc
and ellipse splatting as well. A disadvantage is
that about 30% more fragments have to be ras-
terized. However, most fragments are discarded
early and in practice the performance gain from
the reduced vertex count outweighs the cost of
additional fragments on modern hardware.

In contrast to discs and ellipses, the per-frag-
ment depth and normal cannot be interpolated
by the hardware based on vertex attributes. In
the special case of ellipsoids, both can be derived
from the UV coordinates by projecting onto the
unit sphere in parameter space: p, = ux+
vy + V1 — u? — v?z. The world space normal ny,1q
and depth d can then be computed as follows:

-T
Nyorld = (MT) Ppa‘r
T
Paip = PVMTppaI = [llClip Yelip  Zclip wChp}

Zelip
d=""E
Welip

with P, V, and M being the projection, view, and
model matrix, respectively.
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Texturing is performed using photographs
that were taken at the 3-D scanner positions.
As with the per-fragment depth and normal, we
cannot rely on bilinear interpolation provided
by the hardware. To color each fragment cor-
rectly, we project the world position into the
image plane of the associated scanner view.
The texture coordinates (s,t) are computed
as follows:

T
pproj = K[R t]MTppar = ['xproj Yproj ZPTOJ]

(s ¢]T= Vproj Yoroj }T

Zproj  Zprojht

where K € R¥3 R e R%3, and t e R? are the
intrinsic camera matrix, rotation, and translation
of the camera view, and w and h are the image
dimensions.

VIRTUAL TEXTURING

In the following, we detail our virtual textur-
ing system. It renders texture datasets much
larger than the available graphics memory with
a page-based streaming approach. Perceivable
texturing artifacts are minimized by a page pre-
diction heuristic based on the user’s motion.

The key differences to previous work'®!® are:

+ rendering and determination of the required
virtual texture pages in a single draw pass;

+ apage prediction heuristic to prefetch pages;

« hardware support from modern GPUs.

An overview of the system architecture is
given in Figure 1. The residency manager keeps
track of all pages and updates the respective
GPU resources every frame. The renderer uses
the resources to render the scene and to deter-
mine required pages. These are marked in the
feedback buffer that the feedback resolver then
flattens into a linear array of page IDs to be proc-
essed by the residency manager. Pages that are
not yet in system memory are requested from
the page loader that fetches pages from the
pagefile.

Rendering

Our rendering pipeline adapts the deferred
shading approach by Botsch et al.® and performs
texturing in the attribute pass. Image data from
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Attribute Buffer

Renderer

Feedback Buffer

Feedback
Resolver

< 1 )
—( PagelD Buffer

J
Figure 1. Overview of the virtual texturing system.
System components are represented as rectangles
and resources as rounded rectangles. CPU-side
elements are colored in orange and GPU-side
elements in green.

Page Loader Manager

all 3-D scanner photographs is stored in an array
texture with one layer per view. Textures are
sampled via sparse partially resident images of
the Vulkan APIL Virtual address translation is
performed in hardware, and texture filtering,
such as anisotropic and trilinear filtering, is per-
formed transparently.

Texture fetches from nonresident pages,
which are not mapped to physical memory, result
in undefined behavior. Such fetches have to be
avoided and prior knowledge of which pages are
resident is required. This is provided by the resi-
dency map in Figure 1. It is a 2-D array texture
with the same amount of layers as the virtual tex-
ture and keeps track of the most detailed resident
mip level per page. This is used to clamp the mini-
mum mip level during sampling.

We designate a “mip tail” of pages that are
always resident as a fallback when no higher
quality pages are mapped. This is especially
important when the view changes quickly and
the system cannot load map pages in time for
rendering. Our system keeps all mipmaps
smaller than the hardware-defined page size per-
manently in memory. This guarantees that some
low-detail texture information can always be pre-
sented, while the memory overhead is negligible
at a hardware page-size of 128 x 128 for current
GPU architectures.

We improve rendering performance by sort-
ing all splats by their texture layer. This reduces
texture cache misses, since splats close to each
other that are mapped to the same layer will
likely sample the same virtual texture pages.

Figure 2. Example of LOD popping. The marked
region on the left appears to be blurred because no
high-detail mipmap is resident for that page. In the
next frame (on the right), the mipmap is available and
the blurred region suddenly disappears. This effect
can be very noticeable for users.

Required Page Feedback

There is no obvious correlation between the
splat geometry and virtual texture pages. Conse-
quently, the system relies on feedback from the
rendering pipeline to determine which pages are
required. In the attribute pass, the IDs of
required pages are computed and marked in the
feedback buffer.

A difficulty with blended splat rendering is
that multiple pages can be required per fragment.
We, therefore, allocate a buffer that holds an inte-
ger for each virtual texture page, which contains
all information that is used for the prioritization
of page uploads. Required pages are marked in
the buffer by writing the respective entry nona-
tomically. While nearby fragments write slightly
different values to the feedback buffer, we find
that the resulting chance for nonoptimal upload
orders is vastly outweighed by the performance
gain of avoiding an atomic operation.

Similar to Hollemeersch et al,'® the feedback
resolver performs a compute shader pass that
reduces the buffer to a fixed-sized linear array con-
taining all required pages, the page ID buffer. The
buffer is asynchronously read back by the CPU for
further processing by the residency manager.

Page Prediction

Simply loading pages after they were seen
causes noticeable artifacts since newly available
mipmap levels suddenly pop into view. This so-
called “LOD popping” is illustrated in Figure 2
and can be very irritating to users, affecting the
immersive experience. Our virtual texturing sys-
tem minimizes such artifacts by prefetching
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pages before they are required for rendering. We
employ several heuristics for the prediction of
required pages.

One cause of perceivable LOD popping is for-
ward movement. When getting closer to surfa-
ces, increasingly detailed mipmap levels are
required. A simple but effective solution is to
apply a negative bias to the required mip levels.®
The system, thus, detects more detailed mipmap
levels before they are required for rendering.

In practice, camera rotation and sideways
movement often cause more LOD popping than
moving forward. Different parts of the scene
move into the camera’s field of view (FOV), caus-
ing completely different textures to be required
for rendering. Without prediction, pages will be
loaded too late and perceivable popping occurs.
Camera motion prediction can be employed to
counteract this.® Performing true camera motion
prediction, however, usually requires rendering
a second time with the predicted camera trans-
formation in addition to normal rendering.

We propose to use an extended frustum for
both rendering and required page prediction in a
single pass. The scene is rendered with an
enlarged FOV to see pages close to the border
before they are needed. Only the part of the view-
port that represents the camera’s original FOV is
then textured, shaded, and presented to the user.

Increasing the size of the frustum evenly on all
sides, however, leads to inefficient use of frag-
ments. Generally, the sides of the frustum facing
the movement direction are more important,
since pages appearing along the camera trajec-
tory are likely to be required for rendering in the
next frames. Fragments can be used more effi-
ciently by employing a generalized camera frus-
tum?? illustrated in Figure 3. We apply a heuristic
that maps the angular velocity » and transla-
tional velocity v to the inner viewport’s offset
(Az, Ay) from the extended frustum center as

Az = clamp (0.5 . (L + ﬂ) ,—1, 1) * My
Uln‘dX a)IIl‘rLX

where v,,,x and w,. are the translational and
rotational velocity that cause maximum dis-
placement, m, denotes the margin size in pixels,
and Ay follows analogously.

More elaborate human motion models can be
applied at this point. We observe, however, that
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Figure 3. Left: Top view of the extended camera frustum. The
dashed lines represent the off-axis generalized frustum that

extends the symmetric frustum of the visible

viewport. Right: The

gray region marks the margin area, while the white region contains

the final rendered image.

this simple heuristic already yields satisfying
results in our test cases.

Physical Page Updates

An overview of the physical page updating
process performed by the residency manager is
given in Figure 4. Virtual texture pages need to be
tracked to know which pages have to be loaded
from the pagefile, can be mapped to a physical
page, or be evicted from the page pool to free up
space for other pages. Not all pages are equally
important and, thus, have a priority assigned to
them. The system tracks all pages in several pri-
ority-sorted lists corresponding to the possible
states: seen, loading, loaded, mapped, or evicted.

After processing the page ID buffer, a fixed
number of pages with highest priority are fetched
from the pagefile. Fetching pages happens asyn-
chronously to avoid blocking, which usually takes
several frames. Next, space in the page pool is
allocated for a fixed number of high-priority pages,
which also involves deallocating low-priority
pages. Afterwards, the virtual to physical page
mappings in the GPU’s translation table are

h
h

Figure 4. Overview of the physical page update
process. CPU-side elements are colored in orange
and GPU-side elements in green.

GPU

<
Pagefile
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most important loadAndMapKey least important

| lastSeen | 1—isPredicted | Diffe | 15 evel | miplLevel

ToCenter |

63 43 bits 1bit 4 bits 4 bits 4 bits 8 bits 0

most important evictKey least important

| lastSeen | mipLevel |

63 60 bits 4 bits 0

Figure 5. Bit layouts of the sort keys for loading and
eviction of virtual texture pages.

updated and the physical page data are uploaded.
Lastly, the updated residency map is uploaded
to the GPU. All of these steps are performed once
per frame.

Page Prioritization We propose different sort
keys to compute the priorities of tracked pages
depending on their state. Seen and loaded pages
are sorted based on how much value they add to
the rendered image. Mapped pages are sorted
based on their “unimportance” to evict pages
from the pool that are least likely to be needed
for rendering. The respective sort keys are com-
bined into a 64 bit priority code, illustrated in
Figure 5. The seen and loaded pages are sorted
using the loadAndMapKey in an increasing order,
while already mapped pages are sorted using
the evictKey in a decreasing order.

Recently seen pages are most likely to be
required for rendering in the next frames. Simi-
larly, least recently seen pages should be
evicted first. On top of this, pages that are only
required due to prediction are loaded after
pages that are currently required for rendering.
Coarse mip levels are loaded and mapped first,
while the most-detailed mip levels are evicted
first, which ensures filtering across levels works
at all times. Pages are further prioritized by the
difference between their mip level and the cor-
responding resident mip level. If the difference
is greater, the image is potentially improved
more by loading the page. Pages that are closer
to the screen center are more likely to be
required in the next frames, in contrast to
pages near the edge of the screen that are more
likely to be out of sight.

Loading From the Pagefile Before virtual
pages can be mapped to physical pages, the tex-
ture data needs to be loaded from the pagefile. It
contains the precomputed mipmap levels for
all textures, split into pages and compressed

individually, and is prefixed by a table that con-
tains the per-page size and file offset. Pages are
compressed using a conventional image format,
such as PNG or JPEG, to reduce the memory foot-
print and required bandwidth for reading during
runtime.

Page loading should not stall the pipeline
and is performed asynchronously. Performance
strongly depends on the underlying storage
medium. A fast solid-state drive (SSD) is advis-
able to achieve high throughput. Load requests
are pushed into a thread-safe queue and handled
by a pool of worker threads that push decom-
pressed pages into a second queue to be con-
sumed by the residency manager. A considerable
bottleneck is the nondeterministic cost of
memory allocation. We solve this with a custom
allocator that reuses page-sized chunks from a
preallocated pool.

RESULTS AND DISCUSSION

In the following, we present the results of our
ellipsoid splatting technique and virtual textur-
ing system.

Ellipsoid Splatting

Results of our ellipsoid splatting technique
are shown in Figure 6. The first row shows disc-
shaped splats that are rendered with a globally
uniform splat size and cliplines. Object con-
tours are either overestimated by splats that
are larger than geometric features, or the sur-
face appears fragmented due to an insufficient
local sampling density. The staircase edge in
the foreground of the left image shows that cli-
plines are well suited to preserve sharp edge
features and that the texture quality is
improved. This is due to a better fit of the primi-
tives to the planar sides of the staircase, which
results in less blended fragments and, conse-
quently, reduced ghosting and blurring.

The second row illustrates 2-D ellipse-shaped
splats. While they adapt to the local sampling
density and size of geometric features, their pla-
nar 2-D appearance becomes apparent. Our 3-D
ellipsoid splats in the third row do not exhibit
this problem and yield a plausible appearance
from any viewing direction. The current lack of a
clipping primitive, however, degrades texture
quality in planar regions.
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Figure 6. Comparison of splatting primitives:
Uniform-sized disc splats in the first row illustrate the
difficulty to find an adequate global splat size. 2-D
ellipses in the second row improve the result, but fail
to capture object contours from all viewing angles.
Finally, our 3-D ellipsoid splats in the third row achieve
a plausible object contour from all viewing angles.

Virtual Texturing

Our virtual texturing system was evaluated
regarding both visual quality of the result and
rendering performance. We describe the mea-
surement setup and evaluation criteria before
we present the results in the respective sections.
An impression of the achievable image detail is
given in Figure 7.

Evaluation Methods To evaluate different
aspects of the system, camera trajectories were
recorded from real-world motion with a tracked
VR headset. The following four representative
paths were recorded:

1) look around: head rotation without transla-
tional motion or disocclusion;
2) forward: constant forward motion;
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Figure 7. Examples of the achievable visual detail
by texture upsampling. (a) Original 8 k textures.

(b) Upsampled 32 k textures. (c) Mosaic of 110 cm.
(d) Wall patch of 65 cm.

3) backward: constant backward motion;

4) sideways: sudden disocclusion, sideways
motion past an obstacle revealing large parts
of the scene.

We quantify visual quality in terms of virtual
texture page misses, since perceivable LOD pop-
ping can occur whenever a page is required for
rendering but not resident in memory. System per-
formance is evaluated in terms of frame timings.

Our test dataset is a high-quality laserscan of
the Aachen Cathedral interior. It consists of over
70 million points and 443 photographs each with
a resolution of 7360 x 4912. While this is already
a large texture dataset, our goal is to provide
maximum visual detail, even if users in an IVE
approach objects very closely. Therefore, we
applied a state-of-the-art super-resolution tech-
nique based on generative adversarial networks
to upscale the individual images to a resolution
of 29440 x 19648.2 While the improved image
detail should not be mistaken for actual detail, it
significantly improves the perceived quality
for exploration in IVEs and demonstrates the
feasibility of our approach for datasets of
much higher resolution than our current data
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Table 1. Average number of page misses for each configuration.

mmm Depth
Attribute
B Remainder

discs +
2D ellipses IO'09

Look Around | Forward [ Backwards [ Sideways 30 el
nothing: 1.00 1.00 1.00 1.00
bias: 0.82 0.33 0.97 1.09
frustum: 0.21 1.06 0.13 0.91
combined: 0.07 0.44 0.15 1.17

acquisition pipeline provides. The correspond-
ing pagefiles contain 79.35 GB and 1269.61 GB of

uncompressed texture data, respectively.

In the following, we denote the original data-
set as 8 k and the upsampled dataset as 32 k. If
not explicitly noted otherwise, performance
measurements in this section are given for the
much more challenging 32 k dataset. With the
proposed prediction methods, the original 8 k
dataset could be reproduced with virtually no

page misses at all.

The scenes were rendered in stereo with an
effective screen resolution of 1440 x 1600 per
eye. A prediction margin of 15% and a constant
mip bias of —0.5 were used. All tests were per-
formed on a Debian GNU/Linux system with the
following specifications: Intel Core i7 4770, 16 GB
RAM, Nvidia Geforce GTX 1080 8 GB (driver ver-

sion 418.74), Samsung 840 EVO 250 GB SSD.

Page Prediction To evaluate the amount of
visible artifacts caused by LOD popping, Table 1
lists the average number of page misses for each
test condition. Four prediction configurations
were compared: nothing applies no prediction,
bias applies a constant negative mip bias, frus-
tum uses the extended frustum from the “Page
Prediction” section, and combined applies both
prediction heuristics. All values are given rela-

tive to the nothing condition as a baseline.

System Performance The rendering cost
incurred by our proposed methods is illustrated
in Figure 8. The top figure shows the GPU-side
overhead for 3-D ellipsoid splatting compared to
2-D disc and ellipse splatting without virtual tex-
turing. The bottom figure shows the additional
cost of frustum page prediction for the virtual

texturing system.

I0.09

2 3 4 5 6

(a)

= oo
Attribute

mmm Remainder

frustum

-
0 1
0 1 2 3 4

Figure 8. GPU performance overhead of the
proposed methods (in ms). For technical details
about the different render passes refer to the article
by Botsch et al.® (a) Rendering cost of 3-D ellipsoids
versus 2-D discs or ellipses. (b) Rendering cost of
frustum prediction with required page feedback
and texture page upload in the remainder pass.

To evaluate overall system performance, we
present absolute frame timings for the two differ-
ent texture datasets in Figure 9. The CPU frame
times amount to the processing steps illustrated
in Figure 4, excluding read operations from disk,
which are performed asynchronously. The GPU
frame times include rendering and reduction of
the feedback buffer in addition to the data trans-
fer times.

Discussion

We discuss our results regarding the achiev-
able visual quality and overall system perfor-
mance. Finally, we give a brief report of feedback
we obtained from visitors in a public museum
exhibition.

8k |} !
0 2 4 6 8 10 12 14 16
(@)
8k | !
—{ T ] =
3 4 5 6 7 8

Figure 9. Distribution of frame timings in
milliseconds over all configurations. The red marker
denotes the median, the box represents quartiles, and
the whiskers the extrema of the distribution. (a) CPU
frametimes (in ms). (b) GPU frametimes (in ms).
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Visual Quality Our ellipsoid fitting and splat-
ting approach works particularly well for
sparsely sampled, long and thin objects, as can
be seen in Figure 6. For these kinds of objects,
the cliplines for disc splatting cannot be reliably
estimated. The splat size, thus, commonly
exceeds the object contours and produces
noticeable texturing artifacts. Due to their 3-D
nature, ellipsoids approximate objects such as
ropes, candles, and chains much more accu-
rately using a smaller number of primitives.

Even more importantly, a 3-D ellipsoid gives
rise to a plausible contour from all viewing
angles. This becomes particularly apparent
when moving around objects. Discs and ellipses
reveal their planar shape, while 3-D ellipsoids
appear as consistent volumetric objects, which
makes close-up views appear much more realis-
tic. This significantly improves the plausibility
and, in our judgement, the illusion of presence in
the reconstructed environment.

Objects with sharp but planar features that
can be approximated well using cliplines are,
however, not reproduced as precisely by the
rounded 3-D ellipsoids. This can be observed in
the left column of Figure 6. Therefore, we suggest
to use a hybrid method that uses the proposed
3-D ellipsoids for thin and long objects, and the
well-established disc and ellipse splats with cli-
plines for planar regions of the dataset. Imple-
mentation of a suitable heuristic to choose
between the two primitives on a point-by-point
basis remains a topic for future research.

Evaluation of the prediction heuristics in
Table 1 shows that by using the extended camera
frustum in combination with a negative mip bias,
the number of texture page misses, and thus visual
artifacts in the form of LOD popping, can be signifi-
cantly reduced for the most common cases.

In the less frequent case where large parts of
the scene are disoccluded at once, such as in the
sideways test, the prediction can have a slightly
negative effect. Too many pages need to be
mapped and loaded, such that the overhead of
prematurely loading pages that are eventually
not needed outweighs the potential benefit. Our
implementation can be improved in this regard
by carefully flushing the loading queues during
all stages. Currently, a loading job that has once
started will occupy resources in the pipeline

May/June 2020

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 10:21:37 UTC from IEEE Xplore. Restrictions apply.

that could potentially be allocated for higher-pri-
ority pages.

Performance Our virtual texturing system
with both page prediction heuristics enabled
can maintain a constant update rate of 90 frames
per second required for today’s VR headsets. As
evident in Figure 9, the GPU frametimes were
consistently below 11 ms even for the high-reso-
lution texture set.

Rendering 3-D ellipsoids compared to planar
primitives is about 50% more expensive, as
shown by the GPU timings in Figure 8(a). Real
scenes, however, typically contain large planar
areas that can be rendered with disc-shaped
splats just as effectively. The additional perfor-
mance cost to render the typically small subset
of thin and elongated objects as 3-D ellipsoids is
negligible given the overall improvement in
visual reproduction accuracy.

Furthermore, Figure 8(b) shows that the per-
formance cost of page prediction using an
extended frustum is very moderate. Considering
the substantial reduction in page miss artifacts,
which can be observed in Table 1, the improve-
ment in visual fidelity is certainly worth the addi-
tional effort.

Overall, the performance of our point-based
rendering and virtual texturing system has
proven sufficient to render very challenging
scenes with massively detailed texture datasets
in VR without sacrificing reproduction accuracy.

Audience Reception We had the fortunate
opportunity to present our work to the public at
the German museum exhibition “Thrill of Decep-
tion. From Ancient Art to Virtual Reality” at Lud-
wig Forum Aachen. It attracted over 30000
visitors during a four-month period, and we
received very positive informal audience feed-
back. People were excited to see the potential of
contemporary VR technology and were thor-
oughly impressed by the quality and visual
detail that can be achieved on consumer-grade
hardware.

LIMITATIONS AND FUTURE WORK

In the following, we outline limitations of our
proposed method as well as potential future
research opportunities.
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For an effective hybrid rendering approach, a
robust determination of how well a splat neigh-
borhood can be approximated using 2-D ellipses
and cliplines rather than 3-D ellipsoids is neces-
sary. Outlier points need to be reliably charac-
terized to enable an approximation with better
feature preservation. Furthermore, large fea-
tures might be approximated with fewer splats
using a region growing approach that fits ellip-
soids to neighborhoods of increasing size.

Further improvements can be made regard-
ing rendering quality by reconsidering the
choice of blending weights for the final shading
pass. While the current approach uses only the
fragment’s distance to the splat center, more
sophisticated blending methods could reduce
ghosting or smearing artifacts that sometimes
become apparent. The depth of the blended frag-
ment along the view ray could be considered,
using a heuristic similar to McGuire and Bavoil,**
or fragments with more reliable image data
could be preferred to better preserve sharp tex-
ture features.

Emerging VR headsets enable tracking of the
user’s eye movement. Foveated rendering can
be implemented as presented by Guenter et al.,?®
and more fine-grained prioritization of virtual
texture pages is possible. In combination with
methods that estimate the perceived change in
visual quality caused by mapping or eviction,
this could achieve faithful reproduction of even
larger datasets, without requiring additional
bandwidth or rendering performance.

CONCLUSION

We presented a method for the immersive
visualization of 3-D scanned datasets with mas-
sive amounts of texture data. Using the pre-
sented techniques, cultural heritage sites can be
reproduced in VR with minimal loss of fidelity.

To better approximate the shape of thin and
sparsely sampled objects, we presented 3-D
ellipsoids as a novel point-based rendering prim-
itive. For certain types of objects, the visual qual-
ity we could achieve is superior to prior
methods, especially when moving freely around
objects in an IVE.

We implemented a virtual texturing system
that leverages modern hardware capabilities

and was carefully optimized to meet our perfor-
mance requirements. To further improve the
rendering quality while moving through the
environment, a virtual texture page prediction
heuristic was proposed. With the presented
solution, we are able to render terabyte-scale
texture datasets at interactive frame rates with-
out compromising visual detail.
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