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Abstract—Digitalization of three-dimensional (3-D) objects and scenes using modern

depth sensors and high-resolution RGB cameras enables the preservation of human

cultural artifacts at an unprecedented level of detail. Interactive visualization of these

large datasets, however, is challenging without degradation in visual fidelity. A common

solution is to fit the dataset into available videomemory by downsampling and

compression. The achievable reproduction accuracy is thereby limited for interactive

scenarios, such as immersive exploration in virtual reality (VR). This degradation in visual

realism ultimately hinders the effective communication of human cultural knowledge.

This article presents amethod to render 3-D scan datasets with minimal loss of visual

fidelity. A point-based rendering approach visualizes scan data as a dense splat cloud. For

improved surface approximation of thin and sparsely sampled objects, we propose

oriented 3-D ellipsoids as rendering primitives. To render massive texture datasets, we

present a virtual texturing system that dynamically loads required image data. It is paired

with a single-pass page prediction method that minimizes visible texturing artifacts. Our

system renders a challenging dataset in the order of 70million points and a texture size of

1.2 TB consistently at 90 frames per second in stereoscopic VR.

& DIGITAL PRESERVATION and restoration of cul-

tural artifacts is an integral component to the

recording of human history. Virtual replicas of

historical sites can serve different purposes.

They enable archiving of geometry and texture,

such that faithful reproduction is possible in the

case of decay, destruction, or vandalism. Digital

models furthermore broaden the availability of

cultural property. Travel distance, admission
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charges, lack of accessibility, or the necessity for

site protection can deny many individuals the

opportunity to experience our cultural treasures.

Digital acquisition of high-precision three-

dimensional (3-D) models can nowadays be per-

formed in numerous ways. Using specialized

equipment such as 3-D laser scanners, struc-

tured light or time-of-flight sensors, or by the

fusion of multiview image data in photogramme-

try, highly detailed digital reconstructions of

real-world objects are achievable. The affordabil-

ity of sensors combined with ever-increasing

data capacity and transmission bandwidth ena-

bles us to capture, store, and exchange 3-D

scanned datasets of enormous size.

Heritage preservation, however, comprises

more than just archiving an artifact’s appear-

ance. Ideally, we want to enable observers to

experience a historic site as realistically as pos-

sible, given the sensor resolution at which the

object was captured. People should be able to

engage in the virtualized environment and per-

ceive their surroundings in the same way as if

visiting the real site.

Virtual reality (VR) offers the potential to cre-

ate this sense of presence in immersive virtual

environments (IVE). Yet, while VR systems have

recently become affordable, requirements on

rendering performance are still demanding. For a

sufficient degree of immersion, the system needs

to deliver high interactive frame rates at all times.

This is challenging, particularly for datasets that

do not fit into video memory. Downsampling and

compression combined with dynamic level-of-

detail (LOD) techniques can alleviate this, but

typically result in decreased visual fidelity.

For exploration of 3-D scanned heritage sites

in IVEs, we argue that perceivable losses in

reproduction quality are not tolerable. The

inability to faithfully reproduce an artifact at

interactive frame rates ultimately amounts to a

loss of cultural heritage. Our main goal is, there-

fore, to create a rendering technique that yields

the highest visual quality, while rendering mas-

sive point cloud datasets at interactive frame

rates. To this end, we propose a point-based ren-

dering system using 3-D ellipsoids as a novel ren-

dering primitive.

We furthermore observe that users in

IVEs have the unique possibility to approach

artifacts very closely. While many cultural her-

itage sites are not fully open to the public, a

digital model enables users to explore freely.

Even for high-quality photographs, the achiev-

able resolution from a given distance might

be insufficient. Therefore, we apply a data-

driven super-resolution technique to improve

the effective texture resolution by adding

plausible detail.

Increasing the effective texture resolution,

however, significantly aggravates the problem of

insufficient GPU memory. Consequently, we pro-

pose a virtual texturing system that performs

on-demand loading of image data at full resolu-

tion, while minimizing visible artifacts with an

efficient prediction algorithm for required virtual

texture pages.

In summary, our main contributions are:

� 3-D ellipsoids as improved point rendering

primitives for thin and sparsely sampled

objects (see the “Ellipsoid Splatting” section);

� virtual texturing for massive image data

(see the “Virtual Texturing” section);

� a single-pass page prediction algorithm

(see the “Page Prediction” section).

RELATED WORK
Our proposed method draws heavily on prior

research in point-based rendering techniques

and methods to handle large-scale texture data-

sets. This section gives an overview of related

work in those fields.

Point-Based Rendering

Whilemany applications require a mesh repre-

sentation with topological surface information,

visual reproduction alone does not benefit from it.

Points can instead be used directly for rendering,

saving manual and computational effort. Levoy

and Whitted introduced the idea of using points

as rendering primitives.1 While naive point cloud

rendering as colored points or viewer-aligned

quads is simple to implement and yields high per-

formance, it can result in visual gaps and aliasing

artifacts. Pfister et al. proposed surfels (surface

elements) as improved rendering primitives that

approximate the local surface with oriented discs

in 3-D space.2 Zwicker et al. created the
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Surface Splatting technique that renders surfels in

a high-quality manner on the CPU using screen

space elliptical weighted average (EWA) texture

filtering.3 Botsch et al. further improved the ren-

dering quality with Phong Splatting that associates

a linearly varying normal field with each primi-

tive.4 Themethodwas subsequently implemented

using capabilities of modern graphics program-

ming units and a cheap but effective approxima-

tion of EWA texture filtering.5 To render sharp

features, Zwicker et al. proposed the use of cli-

plines that truncate splats along a line in tangent

space.6 Preiner et al. developed Auto Splats that

computes normals and splat radii in screen space

during rendering.7

Large-Scale Texturing

Much interest in methods to handle the ever-

increasing size of texture data has originated in

the visualization of large geospatial datasets as

well as in the gaming industry.

Texture Streaming Streaming approaches

keep only the textures or mipmaps required for

rendering in memory at a given point in time. The

main challenge is to determine when to load

which textures. A simple approach is to subdi-

vide the scene into fixed zones in which the

required set of textures is precomputed. By keep-

ing track of neighboring zones, textures can be

streamed into memory before they are needed

for rendering. Blow presented a system that

tracks mipmap levels in a least-recently-used

(LRU) cache and predicts required textures using

a mip bias and extrapolated camera movement.8

Dumont et al. prioritized textures based on per-

ceptual importance, using factors such as view

point, illumination, image contrast and frequency

content.9 VanWaveren proposed amultithreaded

streaming method that loads compressed images

from disk and recompresses them using a GPU

format.10 Barb presented a method that weights

mip levels by importance based on the covered

screen space when rendered from a probe’s

position.11

Clipmaps Streaming whole mipmap levels can

still require too much memory, which is often

encountered when visualizing aerial scanned ter-

rain data. Such datasets are typically rendered

with a fixed-perspective viewport that shows a

rectangular section of the dataset. Tanner et al.

propose clipmaps that keep only a fixed-size

clipping area in memory.12 While the original

implementation relies on specialized hardware,

Makarov describes how to implement clipmaps

on commodity hardware using array textures.13

While clipmaps work well for geographic visuali-

zation applications, they are not suited for gen-

eral scenes since only a single contiguous region

of data is kept in memory.

Virtual Texturing A generalization of clip-

maps and texture streaming is virtual texturing.

Similar to virtualized memory in modern operat-

ing systems, textures are partitioned into fixed-

size pages and stored in a page pool. Accesses

are mapped via an indirection table that trans-

lates virtual into physical texture coordinates on

a per-page basis.

Lefebvre et al. propose a virtual texturing

system that marks required pages by rendering

texture coordinates into a framebuffer that

maps each fragment to a page.14 Van Weveren

describes virtual texturing in the game engine

id Tech 5 that determines required pages by ren-

dering the scene itself into a framebuffer and

reduces visible LOD popping by fading in newly

loaded mipmaps.15,16 Mittring et al. investigate

streaming from slow storage devices and efficient

page pool updates.17 Hollemeersch et al. propose

GPU computing for performance improvements

such as flattening the page ID buffer to reduce the

transfer time, or device-side updating of the indi-

rection table.18

Contemporary GPU architectures support

virtualized resources that are not limited to 2-D

textures, but support 1-D textures, cubemaps,

volume textures, and general buffers. The indi-

rection tables are opaquely implemented in

hardware, which makes texture accesses much

simpler and removes the need for an additional

texture fetch.19 Our proposed method leverages

hardware support for virtual texturing using the

Vulkan graphics library.

ELLIPSOID SPLATTING
Planar splats approximate locally flat surfa-

ces well. Sparsely sampled, long and thin
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objects, however, are challenging to represent

with existing point-based rendering primitives.

Discs and ellipses struggle to approximate high

local curvature because of their 2-D nature. To

render such objects, a large amount of sample

points from several viewing angles is required,

which is prohibitive considering the small con-

tribution to the overall scene. To address this

issue, we propose 3-D ellipsoids as a novel point-

based rendering primitive for improved surface

approximation. The piecewise quadratic surface

elements reproduce high-curvature objects with

much fewer sample points and significantly

improve their visual quality.

Fitting Ellipsoids to Point Cloud Data

To better approximate surfaces, we fit an

ellipsoid to the local neighborhood of each point

in a preprocessing step. This involves finding

the ellipsoid’s center c and three axes u; v;w,

which we determine as the axes of maximum var-

iation of a principal component analysis.20

Let P be a set of sufficiently dense sample

points of a surface S. For each point pi 2 P , the

algorithm for computing the axes of an ellipsoid

comprises the following steps.

1) Find the neighborhood N ¼ fp1; . . . ;png:
2) Compute the mean �p ¼ 1

n

Pn
i¼1 pi.

3) Compute the covariance matrix C of N .

4) Compute the eigenvalues �i and

the eigenvectors ei of C.

Common approaches to define the neighbor-

hood are to use the k-nearest neighbors (k-NN)

or all points within a certain radius ". The ad-

vantage of the k-NN method is that exactly k

points are in the resulting set. However, outliers

can be included in the set if not enough

points are in close proximity. We choose to

first include all points in the "-neighborhood for

a predefined ". If fewer than Nmin points are in

the set, we inspect the k-NN set for k ¼ Nmin.

Points are classified as outliers and removed

from the set if their distance to pi is larger than

d > ". If the resulting number of points n satis-

fies Noutlier � n < Nmin, the k-NN set of Nmin

points is used, otherwise pi is discarded. This

procedure yielded robust results with the param-

eters " ¼ 0:02, d ¼ 0:06, Nmin ¼ 6, Noutlier ¼ 3,

where " and d depend on the dataset scale and

average sampling density.

The covariance matrix is then computed as

C ¼ 1

n� 1

Xn
i¼1

ðpi � �pÞðpi � �pÞT

and can be interpreted as a transformation of the

unit sphere to an ellipsoid that matches the

shape of the data distribution. This symmetric

positive definite matrix can be factorized as

C ¼ USUT, where S ¼ diagð�1; �2; �3Þ contains

the eigenvalues of C and U ¼ u1 u2 u3½ � is a

rotation matrix. The eigenvalues of S corre-

spond to the variance s2 along each axis. We

choose the axes as u ¼ 3
ffiffiffiffiffi
�1

p
u1, v ¼ 3

ffiffiffiffiffi
�2

p
u2,

w ¼ 3
ffiffiffiffiffi
�3

p
u3 to contain 99.7% of the points along

each axis inside the ellipsoid.

Rendering

Ourmethod for rendering ellipsoids improves

the quadrics splatting method presented by Sigg

et al.21 by perspectively correct projective tex-

ture mapping using photographs taken from 3-D

scanner positions. We furthermore improve ren-

dering performance by utilizing geometry shad-

ers for primitive instantiation.

The authors defineT as the variancematrix that

transforms from parameter space to object space.

In parameter space, the ellipsoid becomes the unit

sphere, which can be exploited for rendering. The

matrix T is defined in terms of the three basis

vectorsu, v,w and the ellipsoid center c as

T ¼ u v w c
0 0 0 1

� �
:

As with all splatting techniques, geometric primi-

tives need to be rendered to trigger the fragment

shader for the respective area of the frame-

buffer. One way of doing this is to render a quad

with UV coordinates ðu; vÞ ranging from ð�1;�1Þ
to (1,1). The shader then discards all fragments

for which u2 þ v2 > 1 and, thus, lie outside of

the ellipsoid’s projection. The quad needs to

face the camera and be sized such that it acts as

a bounding box of the ellipsoid. This can be

achieved by first computing the basis vectors x,

y and the offset z of the camera-facing quad in

parameter space as
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z ¼ ðVMTÞ�1 0 0 0 1½ �T
kðVMTÞ�1 0 0 0 1½ �Tk

x ¼ 0 1 0 0½ �T � z

k 0 1 0 0½ �T � zk
y ¼ z� x

where V and M are the view and model matrix.

The quad vertices in parameter space can then

be transformed to object space for rendering as

vi ¼ Tðuixþ viyþ zÞ:

Applying z as an offset in parameter space

moves the quad toward the camera such that the

depth of the fragments of the quadserve as a lower

bound for the depth of the ellipsoid. Compared to

positioning the quad at the center of the ellipsoid,

this reduces depth misordering when ellipsoids of

different sizes overlap in screen space.

One of the most performance-critical parts

when rendering a large number of splats is ver-

tex processing. To improve the performance, we

draw a single triangle instead of a quad, with the

following UV coordinates:

a ¼ � ffiffiffi
3

p �1
� �T

; b ¼ 0 2½ �T; c ¼ ffiffiffi
3

p �1
� �T

:

These coordinates form an equilateral triangle

with an edge length of 2
ffiffiffi
3

p
that circumscribes

the unit circle. This optimization works for disc

and ellipse splatting as well. A disadvantage is

that about 30% more fragments have to be ras-

terized. However, most fragments are discarded

early and in practice the performance gain from

the reduced vertex count outweighs the cost of

additional fragments on modern hardware.

In contrast to discs and ellipses, the per-frag-

ment depth and normal cannot be interpolated

by the hardware based on vertex attributes. In

the special case of ellipsoids, both can be derived

from the UV coordinates by projecting onto the

unit sphere in parameter space: ppar ¼ uxþ
vyþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u2 � v2

p
z. The world space normal nworld

and depth d can then be computed as follows:

nworld ¼ ðMTÞ�Tppar

pclip ¼ PVMTppar ¼ xclip yclip zclip wclip½ �T

d ¼ zclip
wclip

with P, V, and M being the projection, view, and

model matrix, respectively.

Texturing is performed using photographs

that were taken at the 3-D scanner positions.

As with the per-fragment depth and normal, we

cannot rely on bilinear interpolation provided

by the hardware. To color each fragment cor-

rectly, we project the world position into the

image plane of the associated scanner view.

The texture coordinates ðs; tÞ are computed

as follows:

pproj ¼ K R t½ �MTppar ¼ xproj yproj zproj½ �T

s t½ �T ¼ xproj
zprojw

yproj
zprojh

h iT

where K 2 R3�3, R 2 R3�3, and t 2 R3 are the

intrinsic camera matrix, rotation, and translation

of the camera view, and w and h are the image

dimensions.

VIRTUAL TEXTURING
In the following, we detail our virtual textur-

ing system. It renders texture datasets much

larger than the available graphics memory with

a page-based streaming approach. Perceivable

texturing artifacts are minimized by a page pre-

diction heuristic based on the user’s motion.

The key differences to previous work16,18 are:

� rendering and determination of the required

virtual texture pages in a single draw pass;

� a page prediction heuristic to prefetch pages;

� hardware support from modern GPUs.

An overview of the system architecture is

given in Figure 1. The residency manager keeps

track of all pages and updates the respective

GPU resources every frame. The renderer uses

the resources to render the scene and to deter-

mine required pages. These are marked in the

feedback buffer that the feedback resolver then

flattens into a linear array of page IDs to be proc-

essed by the residency manager. Pages that are

not yet in system memory are requested from

the page loader that fetches pages from the

pagefile.

Rendering

Our rendering pipeline adapts the deferred

shading approach by Botsch et al.5 and performs

texturing in the attribute pass. Image data from
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all 3-D scanner photographs is stored in an array

texture with one layer per view. Textures are

sampled via sparse partially resident images of

the Vulkan API. Virtual address translation is

performed in hardware, and texture filtering,

such as anisotropic and trilinear filtering, is per-

formed transparently.

Texture fetches from nonresident pages,

which are notmapped to physicalmemory, result

in undefined behavior. Such fetches have to be

avoided and prior knowledge of which pages are

resident is required. This is provided by the resi-

dency map in Figure 1. It is a 2-D array texture

with the same amount of layers as the virtual tex-

ture and keeps track of themost detailed resident

mip level per page. This is used to clamp themini-

mummip level during sampling.

We designate a “mip tail” of pages that are

always resident as a fallback when no higher

quality pages are mapped. This is especially

important when the view changes quickly and

the system cannot load map pages in time for

rendering. Our system keeps all mipmaps

smaller than the hardware-defined page size per-

manently in memory. This guarantees that some

low-detail texture information can always be pre-

sented, while the memory overhead is negligible

at a hardware page-size of 128� 128 for current

GPU architectures.

We improve rendering performance by sort-

ing all splats by their texture layer. This reduces

texture cache misses, since splats close to each

other that are mapped to the same layer will

likely sample the same virtual texture pages.

Required Page Feedback

There is no obvious correlation between the

splat geometry and virtual texture pages. Conse-

quently, the system relies on feedback from the

rendering pipeline to determine which pages are

required. In the attribute pass, the IDs of

required pages are computed and marked in the

feedback buffer.

A difficulty with blended splat rendering is

that multiple pages can be required per fragment.

We, therefore, allocate a buffer that holds an inte-

ger for each virtual texture page, which contains

all information that is used for the prioritization

of page uploads. Required pages are marked in

the buffer by writing the respective entry nona-

tomically. While nearby fragments write slightly

different values to the feedback buffer, we find

that the resulting chance for nonoptimal upload

orders is vastly outweighed by the performance

gain of avoiding an atomic operation.

Similar to Hollemeersch et al.,18 the feedback

resolver performs a compute shader pass that

reduces the buffer to a fixed-sized linear array con-

taining all required pages, the page ID buffer. The

buffer is asynchronously read back by the CPU for

further processing by the residency manager.

Page Prediction

Simply loading pages after they were seen

causes noticeable artifacts since newly available

mipmap levels suddenly pop into view. This so-

called “LOD popping” is illustrated in Figure 2

and can be very irritating to users, affecting the

immersive experience. Our virtual texturing sys-

tem minimizes such artifacts by prefetching

Figure 1. Overview of the virtual texturing system.

System components are represented as rectangles

and resources as rounded rectangles. CPU-side

elements are colored in orange and GPU-side

elements in green.

Figure 2. Example of LOD popping. The marked

region on the left appears to be blurred because no

high-detail mipmap is resident for that page. In the

next frame (on the right), the mipmap is available and

the blurred region suddenly disappears. This effect

can be very noticeable for users.
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pages before they are required for rendering. We

employ several heuristics for the prediction of

required pages.

One cause of perceivable LOD popping is for-

ward movement. When getting closer to surfa-

ces, increasingly detailed mipmap levels are

required. A simple but effective solution is to

apply a negative bias to the required mip levels.8

The system, thus, detects more detailed mipmap

levels before they are required for rendering.

In practice, camera rotation and sideways

movement often cause more LOD popping than

moving forward. Different parts of the scene

move into the camera’s field of view (FOV), caus-

ing completely different textures to be required

for rendering. Without prediction, pages will be

loaded too late and perceivable popping occurs.

Camera motion prediction can be employed to

counteract this.8 Performing true camera motion

prediction, however, usually requires rendering

a second time with the predicted camera trans-

formation in addition to normal rendering.

We propose to use an extended frustum for

both rendering and required page prediction in a

single pass. The scene is rendered with an

enlarged FOV to see pages close to the border

before they are needed. Only the part of the view-

port that represents the camera’s original FOV is

then textured, shaded, and presented to the user.

Increasing the size of the frustum evenly on all

sides, however, leads to inefficient use of frag-

ments. Generally, the sides of the frustum facing

the movement direction are more important,

since pages appearing along the camera trajec-

tory are likely to be required for rendering in the

next frames. Fragments can be used more effi-

ciently by employing a generalized camera frus-

tum22 illustrated in Figure 3. We apply a heuristic

that maps the angular velocity v and transla-

tional velocity v to the inner viewport’s offset

ðDx;DyÞ from the extended frustum center as

Dx ¼ clamp 0:5 � vx
vmax

þ vy

vmax

� �
;�1; 1

� �
�mx

where vmax and vmax are the translational and

rotational velocity that cause maximum dis-

placement, mx denotes the margin size in pixels,

and Dy follows analogously.

More elaborate human motion models can be

applied at this point. We observe, however, that

this simple heuristic already yields satisfying

results in our test cases.

Physical Page Updates

An overview of the physical page updating

process performed by the residency manager is

given in Figure 4. Virtual texture pages need to be

tracked to know which pages have to be loaded

from the pagefile, can be mapped to a physical

page, or be evicted from the page pool to free up

space for other pages. Not all pages are equally

important and, thus, have a priority assigned to

them. The system tracks all pages in several pri-

ority-sorted lists corresponding to the possible

states: seen, loading, loaded,mapped, or evicted.

After processing the page ID buffer, a fixed

number of pages with highest priority are fetched

from the pagefile. Fetching pages happens asyn-

chronously to avoid blocking, which usually takes

several frames. Next, space in the page pool is

allocated for a fixednumber of high-priority pages,

which also involves deallocating low-priority

pages. Afterwards, the virtual to physical page

mappings in the GPU’s translation table are

Figure 3. Left: Top view of the extended camera frustum. The

dashed lines represent the off-axis generalized frustum that

extends the symmetric frustum of the visible viewport. Right: The

gray region marks the margin area, while the white region contains

the final rendered image.

Figure 4. Overview of the physical page update

process. CPU-side elements are colored in orange

and GPU-side elements in green.
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updated and the physical page data are uploaded.

Lastly, the updated residency map is uploaded

to the GPU. All of these steps are performed once

per frame.

Page Prioritization We propose different sort

keys to compute the priorities of tracked pages

depending on their state. Seen and loaded pages

are sorted based on how much value they add to

the rendered image. Mapped pages are sorted

based on their “unimportance” to evict pages

from the pool that are least likely to be needed

for rendering. The respective sort keys are com-

bined into a 64 bit priority code, illustrated in

Figure 5. The seen and loaded pages are sorted

using the loadAndMapKey in an increasing order,

while already mapped pages are sorted using

the evictKey in a decreasing order.

Recently seen pages are most likely to be

required for rendering in the next frames. Simi-

larly, least recently seen pages should be

evicted first. On top of this, pages that are only

required due to prediction are loaded after

pages that are currently required for rendering.

Coarse mip levels are loaded and mapped first,

while the most-detailed mip levels are evicted

first, which ensures filtering across levels works

at all times. Pages are further prioritized by the

difference between their mip level and the cor-

responding resident mip level. If the difference

is greater, the image is potentially improved

more by loading the page. Pages that are closer

to the screen center are more likely to be

required in the next frames, in contrast to

pages near the edge of the screen that are more

likely to be out of sight.

Loading From the Pagefile Before virtual

pages can be mapped to physical pages, the tex-

ture data needs to be loaded from the pagefile. It

contains the precomputed mipmap levels for

all textures, split into pages and compressed

individually, and is prefixed by a table that con-

tains the per-page size and file offset. Pages are

compressed using a conventional image format,

such as PNG or JPEG, to reduce the memory foot-

print and required bandwidth for reading during

runtime.

Page loading should not stall the pipeline

and is performed asynchronously. Performance

strongly depends on the underlying storage

medium. A fast solid-state drive (SSD) is advis-

able to achieve high throughput. Load requests

are pushed into a thread-safe queue and handled

by a pool of worker threads that push decom-

pressed pages into a second queue to be con-

sumed by the residency manager. A considerable

bottleneck is the nondeterministic cost of

memory allocation. We solve this with a custom

allocator that reuses page-sized chunks from a

preallocated pool.

RESULTS AND DISCUSSION
In the following, we present the results of our

ellipsoid splatting technique and virtual textur-

ing system.

Ellipsoid Splatting

Results of our ellipsoid splatting technique

are shown in Figure 6. The first row shows disc-

shaped splats that are rendered with a globally

uniform splat size and cliplines. Object con-

tours are either overestimated by splats that

are larger than geometric features, or the sur-

face appears fragmented due to an insufficient

local sampling density. The staircase edge in

the foreground of the left image shows that cli-

plines are well suited to preserve sharp edge

features and that the texture quality is

improved. This is due to a better fit of the primi-

tives to the planar sides of the staircase, which

results in less blended fragments and, conse-

quently, reduced ghosting and blurring.

The second row illustrates 2-D ellipse-shaped

splats. While they adapt to the local sampling

density and size of geometric features, their pla-

nar 2-D appearance becomes apparent. Our 3-D

ellipsoid splats in the third row do not exhibit

this problem and yield a plausible appearance

from any viewing direction. The current lack of a

clipping primitive, however, degrades texture

quality in planar regions.

Figure 5. Bit layouts of the sort keys for loading and

eviction of virtual texture pages.

Art and Cultural Heritage

26 IEEE Computer Graphics and Applications

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 10:21:37 UTC from IEEE Xplore.  Restrictions apply. 



Virtual Texturing

Our virtual texturing system was evaluated

regarding both visual quality of the result and

rendering performance. We describe the mea-

surement setup and evaluation criteria before

we present the results in the respective sections.

An impression of the achievable image detail is

given in Figure 7.

Evaluation Methods To evaluate different

aspects of the system, camera trajectories were

recorded from real-world motion with a tracked

VR headset. The following four representative

paths were recorded:

1) look around: head rotation without transla-

tionalmotion or disocclusion;

2) forward: constant forward motion;

3) backward: constant backward motion;

4) sideways: sudden disocclusion, sideways

motion past an obstacle revealing large parts

of the scene.

We quantify visual quality in terms of virtual

texture page misses, since perceivable LOD pop-

ping can occur whenever a page is required for

rendering but not resident in memory. System per-

formance is evaluated in terms of frame timings.

Our test dataset is a high-quality laserscan of

the Aachen Cathedral interior. It consists of over

70 million points and 443 photographs each with

a resolution of 7360 � 4912. While this is already

a large texture dataset, our goal is to provide

maximum visual detail, even if users in an IVE

approach objects very closely. Therefore, we

applied a state-of-the-art super-resolution tech-

nique based on generative adversarial networks

to upscale the individual images to a resolution

of 29 440 � 19 648.23 While the improved image

detail should not be mistaken for actual detail, it

significantly improves the perceived quality

for exploration in IVEs and demonstrates the

feasibility of our approach for datasets of

much higher resolution than our current data

Figure 6. Comparison of splatting primitives:

Uniform-sized disc splats in the first row illustrate the

difficulty to find an adequate global splat size. 2-D

ellipses in the second row improve the result, but fail

to capture object contours from all viewing angles.

Finally, our 3-D ellipsoid splats in the third row achieve

a plausible object contour from all viewing angles.

Figure 7. Examples of the achievable visual detail

by texture upsampling. (a) Original 8 k textures.

(b) Upsampled 32 k textures. (c) Mosaic of 110 cm.

(d) Wall patch of 65 cm.
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acquisition pipeline provides. The correspond-

ing pagefiles contain 79.35 GB and 1269.61 GB of

uncompressed texture data, respectively.

In the following, we denote the original data-

set as 8 k and the upsampled dataset as 32 k. If

not explicitly noted otherwise, performance

measurements in this section are given for the

much more challenging 32 k dataset. With the

proposed prediction methods, the original 8 k

dataset could be reproduced with virtually no

page misses at all.

The scenes were rendered in stereo with an

effective screen resolution of 1440 � 1600 per

eye. A prediction margin of 15% and a constant

mip bias of �0.5 were used. All tests were per-

formed on a Debian GNU/Linux system with the

following specifications: Intel Core i7 4770, 16 GB

RAM, Nvidia Geforce GTX 1080 8 GB (driver ver-

sion 418.74), Samsung 840 EVO 250 GB SSD.

Page Prediction To evaluate the amount of

visible artifacts caused by LOD popping, Table 1

lists the average number of page misses for each

test condition. Four prediction configurations

were compared: nothing applies no prediction,

bias applies a constant negative mip bias, frus-

tum uses the extended frustum from the “Page

Prediction” section, and combined applies both

prediction heuristics. All values are given rela-

tive to the nothing condition as a baseline.

System Performance The rendering cost

incurred by our proposed methods is illustrated

in Figure 8. The top figure shows the GPU-side

overhead for 3-D ellipsoid splatting compared to

2-D disc and ellipse splatting without virtual tex-

turing. The bottom figure shows the additional

cost of frustum page prediction for the virtual

texturing system.

To evaluate overall system performance, we

present absolute frame timings for the two differ-

ent texture datasets in Figure 9. The CPU frame

times amount to the processing steps illustrated

in Figure 4, excluding read operations from disk,

which are performed asynchronously. The GPU

frame times include rendering and reduction of

the feedback buffer in addition to the data trans-

fer times.

Discussion

We discuss our results regarding the achiev-

able visual quality and overall system perfor-

mance. Finally, we give a brief report of feedback

we obtained from visitors in a public museum

exhibition.

Table 1. Average number of page misses for each configuration.

Look Around Forward Backwards Sideways

nothing: 1.00 1.00 1.00 1.00

bias: 0.82 0.33 0.97 1.09

frustum: 0.21 1.06 0.13 0.91

combined: 0.07 0.44 0.15 1.17

Figure 8. GPU performance overhead of the

proposed methods (in ms). For technical details

about the different render passes refer to the article

by Botsch et al.5 (a) Rendering cost of 3-D ellipsoids

versus 2-D discs or ellipses. (b) Rendering cost of

frustum prediction with required page feedback

and texture page upload in the remainder pass.

Figure 9. Distribution of frame timings in

milliseconds over all configurations. The red marker

denotes the median, the box represents quartiles, and

the whiskers the extrema of the distribution. (a) CPU

frametimes (in ms). (b) GPU frametimes (in ms).
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Visual Quality Our ellipsoid fitting and splat-

ting approach works particularly well for

sparsely sampled, long and thin objects, as can

be seen in Figure 6. For these kinds of objects,

the cliplines for disc splatting cannot be reliably

estimated. The splat size, thus, commonly

exceeds the object contours and produces

noticeable texturing artifacts. Due to their 3-D

nature, ellipsoids approximate objects such as

ropes, candles, and chains much more accu-

rately using a smaller number of primitives.

Even more importantly, a 3-D ellipsoid gives

rise to a plausible contour from all viewing

angles. This becomes particularly apparent

when moving around objects. Discs and ellipses

reveal their planar shape, while 3-D ellipsoids

appear as consistent volumetric objects, which

makes close-up views appear much more realis-

tic. This significantly improves the plausibility

and, in our judgement, the illusion of presence in

the reconstructed environment.

Objects with sharp but planar features that

can be approximated well using cliplines are,

however, not reproduced as precisely by the

rounded 3-D ellipsoids. This can be observed in

the left column of Figure 6. Therefore, we suggest

to use a hybrid method that uses the proposed

3-D ellipsoids for thin and long objects, and the

well-established disc and ellipse splats with cli-

plines for planar regions of the dataset. Imple-

mentation of a suitable heuristic to choose

between the two primitives on a point-by-point

basis remains a topic for future research.

Evaluation of the prediction heuristics in

Table 1 shows that by using the extended camera

frustum in combination with a negative mip bias,

the number of texture pagemisses, and thus visual

artifacts in the form of LOD popping, can be signifi-

cantly reduced for themost common cases.

In the less frequent case where large parts of

the scene are disoccluded at once, such as in the

sideways test, the prediction can have a slightly

negative effect. Too many pages need to be

mapped and loaded, such that the overhead of

prematurely loading pages that are eventually

not needed outweighs the potential benefit. Our

implementation can be improved in this regard

by carefully flushing the loading queues during

all stages. Currently, a loading job that has once

started will occupy resources in the pipeline

that could potentially be allocated for higher-pri-

ority pages.

Performance Our virtual texturing system

with both page prediction heuristics enabled

can maintain a constant update rate of 90 frames

per second required for today’s VR headsets. As

evident in Figure 9, the GPU frametimes were

consistently below 11 ms even for the high-reso-

lution texture set.

Rendering 3-D ellipsoids compared to planar

primitives is about 50% more expensive, as

shown by the GPU timings in Figure 8(a). Real

scenes, however, typically contain large planar

areas that can be rendered with disc-shaped

splats just as effectively. The additional perfor-

mance cost to render the typically small subset

of thin and elongated objects as 3-D ellipsoids is

negligible given the overall improvement in

visual reproduction accuracy.

Furthermore, Figure 8(b) shows that the per-

formance cost of page prediction using an

extended frustum is very moderate. Considering

the substantial reduction in page miss artifacts,

which can be observed in Table 1, the improve-

ment in visual fidelity is certainly worth the addi-

tional effort.

Overall, the performance of our point-based

rendering and virtual texturing system has

proven sufficient to render very challenging

scenes with massively detailed texture datasets

in VR without sacrificing reproduction accuracy.

Audience Reception We had the fortunate

opportunity to present our work to the public at

the German museum exhibition “Thrill of Decep-

tion. From Ancient Art to Virtual Reality” at Lud-

wig Forum Aachen. It attracted over 30 000

visitors during a four-month period, and we

received very positive informal audience feed-

back. People were excited to see the potential of

contemporary VR technology and were thor-

oughly impressed by the quality and visual

detail that can be achieved on consumer-grade

hardware.

LIMITATIONS AND FUTURE WORK
In the following, we outline limitations of our

proposed method as well as potential future

research opportunities.
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For an effective hybrid rendering approach, a

robust determination of how well a splat neigh-

borhood can be approximated using 2-D ellipses

and cliplines rather than 3-D ellipsoids is neces-

sary. Outlier points need to be reliably charac-

terized to enable an approximation with better

feature preservation. Furthermore, large fea-

tures might be approximated with fewer splats

using a region growing approach that fits ellip-

soids to neighborhoods of increasing size.

Further improvements can be made regard-

ing rendering quality by reconsidering the

choice of blending weights for the final shading

pass. While the current approach uses only the

fragment’s distance to the splat center, more

sophisticated blending methods could reduce

ghosting or smearing artifacts that sometimes

become apparent. The depth of the blended frag-

ment along the view ray could be considered,

using a heuristic similar to McGuire and Bavoil,24

or fragments with more reliable image data

could be preferred to better preserve sharp tex-

ture features.

Emerging VR headsets enable tracking of the

user’s eye movement. Foveated rendering can

be implemented as presented by Guenter et al.,25

and more fine-grained prioritization of virtual

texture pages is possible. In combination with

methods that estimate the perceived change in

visual quality caused by mapping or eviction,

this could achieve faithful reproduction of even

larger datasets, without requiring additional

bandwidth or rendering performance.

CONCLUSION
We presented a method for the immersive

visualization of 3-D scanned datasets with mas-

sive amounts of texture data. Using the pre-

sented techniques, cultural heritage sites can be

reproduced in VR with minimal loss of fidelity.

To better approximate the shape of thin and

sparsely sampled objects, we presented 3-D

ellipsoids as a novel point-based rendering prim-

itive. For certain types of objects, the visual qual-

ity we could achieve is superior to prior

methods, especially when moving freely around

objects in an IVE.

We implemented a virtual texturing system

that leverages modern hardware capabilities

and was carefully optimized to meet our perfor-

mance requirements. To further improve the

rendering quality while moving through the

environment, a virtual texture page prediction

heuristic was proposed. With the presented

solution, we are able to render terabyte-scale

texture datasets at interactive frame rates with-

out compromising visual detail.
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