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Abstract—Understanding the degree of satisfaction for visi-
tors has been a key factor in selecting attractive collections
and designing appealing layouts in art galleries and museums.
Although monitoring the actual spatiotemporal behaviors of
visitors is essential for this purpose, introducing an expensive
monitoring system would impose a heavy burden on the financial
management and leads to unwanted restrictions on the layout
design in the exhibition rooms. This paper presents an approach
to visualizing the spatiotemporal changes in the maps of visitors’
interest with a system of installed single-board computers such as
Raspberry Pi devices. Employing single-board computers as IoT
sensors facilitates monitoring systems to maximally covers the
entire exhibition space while keeping the associated installation
cost and power consumption sufficiently low. Our approach
for this novel system organization begins by first detecting
individuals from camera images using machine learning tech-
niques and reconstructing their spatial positions from perspective
views. Kernel density estimation was employed to represent the
distribution of interest across the entire exhibition room as a
continuous function by respecting the reconstructed positions
of visitors. This allowed the use of heatmaps to visualize the
changes in the map of interest reflecting the travel history of
individual visitors and the accumulated distribution of interest
over a specific period. Experimental results from eight months
of measurement data demonstrate the capability of the proposed
approach, including meaningful trends that reveal how the layout
of collections attracted visitors to the exhibitions.

Index Terms—maps of interest, single-board computers, spa-
tiotemporal changes, heatmaps, exhibition layout design

I. INTRODUCTION

The spatial placement of collections significantly impacts

the attractiveness of individual pieces of work, especially in

art galleries and museums. Curators often extract historical

relations between such pieces before finding their optimal

layout to enhance visitors’ understanding of the underlying

backgrounds of collections in the exhibition. However, they

usually have qualitative means of assessing the spatial design

of these exhibits only, for example, by asking visitors to

participate in survey questionnaires to obtain their feedback.

This consideration leads us to seek an effective tool for

quantitatively evaluating the goodness in the spatial placement

of pieces in the exhibition space.

The approach explored in this study is to track the behavior

of visitors in the exhibition room so that we can understand

their interest and preference in the exhibited pieces of work.

This is analogous to understanding the preference of individ-

uals for visual media by tracking the movement of their gaze

points, for example. Nonetheless, recording the movements of

visitors usually involves the use of expensive sensor devices or

Fig. 1. Visualizing spatiotemporal changes in the map of visitors’ interest as
a heatmap.

tracking markers equipped with communication devices. This

inevitably results in unwanted design constraints on the layout

of the exhibition space and imposes physical sensor devices on

visitors. It is also crucial to avoid collecting visitors’ personal

information when tracking their spatiotemporal positions.

In this paper, we present an approach for composing maps of
interest to represent how visitors are interested in the collection

of exhibits. Our tools for this approach are inexpensive single-

board computers equipped with sensors, such as Raspberry Pi
devices, which facilitate tracking the spatiotemporal behavior

of visitors in exhibition rooms. The bounding boxes of visitors

in the camera images are first extracted using a machine-

learning-based object detection technique, and these are sub-

sequently used to reconstruct their 3D positions by inverting

the viewing transformation. By synchronizing the camera

frames of multiple sensors, we compose an entire layout of

visitors in the exhibition space. We evaluate such layouts as

heatmaps by visualizing the spatiotemporal distributions of

visitors’ interests as dynamic density distribution maps. As

experimental results, we accumulate the distribution maps of

interest frame by frame as an integral map to understand how

the overall visitors distributed their interest in individual pieces

of work during specific periods. Fig. 1 shows an example

in which we visualize spatiotemporal changes in the map of

visitors’ interest as a heatmap.

This study’s contributions can be summarized as follows:

• Reasonably affordable single-board computers are em-

ployed as IoT sensors, using their programmable char-

acteristics to process the measurement data.

• A novel approach designed explicitly for single-board

computers is developed to compose maps of interest by

tracking the spatiotemporal behaviors of museum visitors.
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The rest of this paper is organized as follows. Section II

provides a brief survey on related topics in the context of mu-

seum exhibition design and visualization. Section III explains

the setup of single-board computers as IoT sensors we installed

in the museum. Section IV describes how we reproduced

the spatiotemporal behavior of visitors in the museum using

techniques for machine-leaning-based object detection and 3D

reconstruction. Section V details our techniques for visualizing

maps of visitors’ interests in museum exhibits. Section VI

presents our analysis of the viewing behaviors of visitors from

eight months of measurement data, followed by a discussion

of the proposed approach. Finally, we conclude this paper and

refer to possible future extensions in Section VII.

II. RELATED WORK

We briefly review previous work on designing exhibition

layouts and visualizing the distributions of interest.

A. Designing Exhibition Layouts

Much research has been conducted to evaluate the selection

and layout of exhibits in museum spaces.

Choi [1] explored ways to understand the relationship

between the spatial layout of the museum and the exploration

patterns of visitors, and Hillier and Tzortzi [2] analyzed the

spatial configuration of the exhibition to understand its impact

on the formation of traveling visitors. Peponis et al. [3] further

studied how the thematic grouping of exhibits influences the

spatial behaviors of visitors. Yalowitz and Bronnenkant [4]

focused on the timing and tracking of museum visitors to

extract their characteristic traveling patterns from observation.

Bitgood [5] surveyed pieces of literature on visitor circulation

in exploring the museums, and Kirchberg and Tröndle [6] re-

viewed studies on visitors’ experiences in exhibitions and iden-

tified similarities and dissimilarities between them. Yoshimura

et al. [7] employed Bluetooth sensors to collect anonymized

data about visitors to the Louvre Museum. In particular,

they focused on the microscopic behaviors of visitors in

exploring the museum and unveiled the underlying mechanism

of congestion in the physical space. Simulating the exploration

of museum exhibits in augmented-reality environments was

proposed in [8].

B. Visualizing Distributions of Interest

Visualization techniques help us not only to facilitate the

understanding of historical and scientific contents exhibited in

the museums [9], [10] but also to interpret the movements of

visitors exploring the exhibition space.

Visualizing distributions of interest in the exhibition space

relies on the analysis of movement data [11]. Several pio-

neering studies were done by Andrienko et al. [12], [13], in

which they successfully extracted meaningful features from

detailed movement data by visualizing it as a set of trajectories.

Due to recent advancements in sensing technologies, several

indoor positioning approaches have become available for our

use [14]. Lanir et al. [15] introduced a proximity-based indoor

Fig. 2. Raspberry Pi board equipped with sensors, including a camera.

positioning system equipped with radio frequency identifica-

tion (RFID) tags [16] to track the movements of individual

visitors and sophisticated visualization tools to enhance the

visual readability of their exploration behaviors in the mu-

seum. Visualization approaches [17], [18] also benefit us in

producing continuous spatiotemporal changes by interpolating

relatively discrete samples in terms of time. Another tool

for interactively navigating moving patterns of characters

facilitates an understanding of the behavioral trends of visitors

to the exhibition space [19]. Extracting specific patterns from

the observed behavior of museum visitors [20] and visitor

pairs [21] have also been tackled. Note that understanding

human movements through sound [22] may allow us to im-

plement multimodal visualization models.

The aim of this study is to visualize the spatiotemporal

behaviors of visitors to encode the dynamic changes in the

population density distribution in the exhibition room. For

this purpose, we can employ heatmap representations by

considering a visitor traveling in the exhibition room as a

gaze point moving on the screen. Visualizing the movements

of eye gazes has been essential to evaluating the quality

of visual information and its associated interfaces [23], and

heatmaps along with gaze plots have often been used for this

purpose [24], [25]. In this study, we employ a technique for

visualizing time-varying heatmaps proposed in [26] to illumi-

nate the underlying trends in the spatiotemporal behaviors of

museum visitors.

III. INSTALLING SENSORS

This project is carried out in collaboration with the

Fukushima Museum, a prefectural museum in Aizu-

Wakamatsu city. The museum allows visitors to view exhibits

freely if they pay a relatively low admission fee. In this section,

we describe how single-board computers were installed as

sensors in the exhibition room of the museum.

A. Installing Raspberry Pi Devices as Sensors

Raspberry Pi devices were selected as single-board com-

puters because they are readily available and cost-effective for

educational purposes. In practice, the Raspberry Pi computer

allows us to accommodate sensors as its peripherals, including

a thermometer, a hygrometer, an illuminance meter, a sound

level meter, a pressure gauge, a camera, a thermal imaging

camera, a motion detector, and so on. In this study, photos

captured by the Raspberry Pi 4 with the camera device were

used to track the positions of visitors. These Raspberry Pi
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124 3

24m

12m

Fig. 3. Sensors installed in the exhibition room.

Fig. 4. Detecting visitors with the YOLO algorithm.

devices send measurement data via the local wireless network

available exclusively for this project and save them on the disk

storage maintained by the server. Fig. 2 shows the Raspberry

Pi device that was installed in the exhibition room.

Several software programs were installed on the Raspberry

Pi computers to conduct the necessary pre-processing of

measurement data. The device does not send actual photos

captured by the camera to avoid storing identity information

about the visitors. Instead, the pre-processed results obtained

by the installed programs were saved. Each single-board

device was programmed to store the measurement data every

minute during the opening hours of the museum.

B. Sensor Setup

Four Raspberry Pi sensors were installed in the exhibition

room for collections from the Tumulus period. Fig. 3 illustrates

the layout of the sensors installed in the room, where we tried

to cover the entire space with the four sensors by adjusting

their camera directions. The sensors were placed at an approx-

imate height of 2.5 m to avoid disturbing the visitors’ views. In

the experiments, the measurement data were analyzed offline

as a post-process to reproduce the spatiotemporal changes in

the map of interest over the exhibition room.

IV. TRACKING THE POSITIONS OF VISITORS

This section describes the approach used to retrieve the 3D

positions of visitors in the exhibition room.

A. Detecting Visitors in Camera Images

The first task was identifying visitors in the camera images

captured by the respective sensors. For this purpose, the YOLO
algorithm [27] was employed, allowing us to detect objects and

their classification types. The YOLO algorithm detects such

↘ ↙

Fig. 5. Computing a homography from a single perspective image to the
ground plane by matching pairs of corresponding points.

specific objects in images and videos with trained deep con-
volutional neural networks, and its precision is high compared

to other algorithms. Fig. 4 demonstrates an example of persons

detected as bounding boxes using the YOLO algorithm.

The YOLOv3 algorithm [28] for detecting visitors as persons

was implemented using Python and installed on the Raspberry

Pi computer. This implies that the camera images captured by

the Raspberry Pi sensors were never directly stored. Instead,

the corner coordinates of the bounding boxes that enclose

the detected persons as visitors were recorded. In this way,

personal information about visitors identified from the camera

images can immediately be discarded.

B. Reconstructing the Positions of Visitors

Having extracted the bounding boxes of visitors in the

exhibition room, their standing positions on the ground were

explored. The aim was to eliminate perspective distortion

in the camera image by calculating a homography from the

perspective image to the ground plane of the floor plan. For

further information, refer to additional details about homogra-

phy in several technical papers [29], [30].

To carry out this approach, homography computation tools

in the OpenCV library were employed, where four or more

pairs of corresponding points in the two images needed to

be matched [31]. Fig. 5 depicts a case where six pairs of

corresponding points were manually plotted between a single

perspective image and the floor plan image. This manual

plotting of matching points for the single perspective image

captured by each sensor was carried out to compute the

standing positions of visitors.

It was still necessary to identify the ground position of

each visitor in the perspective view from the corresponding

bounding box obtained by the YOLO algorithm. For each

bounding box, the midpoint of the bottom edge of the box may

be employed as the standing point of the visitor. However, it

is sometimes the case that some exhibits occlude the lower

body of a visitor, and thus the bounding box is truncated to

enclose the upper body only. This problem was resolved by
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Sensor #1 Sensor #2

Sensor #3 Sensor #4

Fig. 6. Detected bounding boxes (in orange) and manually plotted feature
points (in red) in the camera view of each sensor and reconstructed positions
of the visitors (as orange disks) in the exhibition room.

computing the aspect ratio of each bounding box. Empirically,

we observed that the ratio of the box width to the height

is around 1:3 if the box encloses the entire body of a

standing person. Thus, we intentionally extend the bounding

box downward so that the aspect ratio becomes 1:3 if the

height is less than three times the width. Otherwise, we use the

original bounding box to compute the midpoint of the bottom

edge. This way, we tried to identify the standing positions of

visitors if obstacles occluded their bodies.

Fig. 6 presents perspective camera views of the four sen-

sors together with extracted bounding boxes (in orange) and

manually plotted feature points (in red) at the top, and the cor-

responding standing positions (as orange disks) reconstructed

from the computed homographies. Bounding boxes (in light

blue), which enclose security guards and explainers, were

intentionally excluded since their behavioral patterns were

already known. For example, see a blue box in the camera

image of Sensor #3 in Fig. 6.

V. VISUALIZING MAPS OF VISITORS’ INTEREST

The camera sensor data collected in the previous step could

now be used to visualize the maps of interest associated with

the spatial distribution of visitors in the exhibition room. For

this purpose, first the entire distribution of visitors in the

exhibition room was reconstructed, and then visual analysis of

spatiotemporal changes in the map of interest was conducted.

124 3

6m 5.5m 5m6m

Fig. 7. Coverage area assigned to each sensor in the exhibition room.

A. Integrating Visitor Positions Obtained by Multiple Sensors

Although each of the four installed sensors was controlled

to process a camera image and record the visitors’ position

every minute, these needed to be integrated to compose the

entire distribution of the visitors in the exhibition room. Un-

fortunately, it was possible that two or more sensors captured

the same visitors, meaning it was necessary to identify the

standing position of each visitor exclusively. As shown in

Fig. 5, the approach taken was to limit the coverage area of

each sensor by respecting the projected area of the camera

image with the corresponding homography, Fig. 7 shows the

assignment of the entire exhibition room to the respective

sensors.

It was also possible that some sensors failed to record the

bounding boxes of visitors every minute on time or stored

them multiple times within a single minute. In this case, the

analysis was limited to the frames in which all four sensors

successfully sent the analysis results on time and skipped other

unsynchronized records. This strategy allowed synchronization

of the analysis results provided by each sensor and make the

analysis consistent in the spatiotemporal behaviors of visitors.

B. Visualizing the Spatiotemporal Behaviors of Visitors

After having successfully integrated the local distributions

of visitors provided by multiple sensors, the entire map of in-

terest in the exhibition room was visualized. For this purpose,

the spatial distributions of visitors were transformed into visual

maps respecting their temporal changes. The common idea is

to trace the travel trajectories of visitors individually. However,

it is not always possible to fully identify the correspondence

between the visitors between adjacent temporal frames be-

cause many visitors rapidly move around in the exhibition

room within one minute. Another reason is that some sets of

visitors may stay still around some spots for a long time, and

thus the trajectories may overlap multiple times on the floor

map.

In this study, heatmaps were employed as the visualiza-

tion tool for illustrating the spatiotemporal changes in the

distribution of visitors’ interest. This is beneficial because

it is possible to instantly identify meaningful hotspots in

the exhibition room through visual inspection. Furthermore,
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temporal changes can be incorporated into the distribution by

respecting the history of visitors’ positions.

The adopted approach employed the analogy of traveling

visitors in the exhibition space as eye-gaze movements on

the screen [26]. This was accomplished by recording the

spatiotemporal behaviors of visitors in the exhibition room and

computing the associated smooth density using kernel density
estimation [32]. More specifically, the visitors’ positions were

convolved with Gaussian kernels as:

G(x, y) =
1√
2π

exp(−x2 + y2

2
),

where (x, y) corresponds to 2D ground positions in the ex-

hibition room. Suppose that (xi, yi) indicates the 2D ground

position of the i-th visitor, where i = 1, . . . , L. The heatmap

is given by

H(x, y) =
2

L

L∑

i=1

max{0, T − (tp − ti)}
T

G(x− xi, y − yi),

where ti is the time when the visitor position was recorded,

and tp is the present time. Note that T indicates the predefined

duration of the visitors’ interest on which we want to focus.

This helps us represent the history of their behaviors in the

heatmap representation. Here, we set the predefined period to

be five minutes by default. Fig. 1 shows a snapshot of the time-

varying heatmap over the exhibition room, where the color

changes from blue to green to red as the degree of density

increases.

VI. RESULTS

In this section, we present several experimental results to

demonstrate the capability of our approach.

A. Data Acquisition from Sensors and Implementation

We recorded the measurement data obtained through the

four sensors installed in the Fukushima Museum from July

2021 to February 2022. The data include bounding boxes of

visitors in the camera views, which are extracted by the YOLO

algorithm on the four Raspberry Pi devices every minute

during the opening period of the museum. As a preprocess, we

manually plotted four or more pairs of corresponding points

in the camera view and floor map for each sensor to calculate

the homography between them. The current approach was

installed offline on workstations to check its feasibility. This

program software is expected to be installed on Raspberry Pi

devices later for online monitoring of the exhibition room.

B. Experimental Results

Fig. 8 shows heatmaps representing temporal sequences of

maps of interest derived from the distributions of visitors in the

exhibition room. Fig. 8(a) shows the spatiotemporal behaviors

of individual visitors as four snapshots, in which they were

likely to be interested in specific sets of exhibits in the

room. Note that the snapshots correspond to the distribution

of visitors every minute. The visitor in the top right of the

room remained stationary for four minutes. On the other hand,

visitors in the bottom left kept their attention on the collections

for two minutes and left. The last snapshot reflects their past

behaviors by accentuating the color of the heatmap around

it. On the contrary, Fig. 8(b) presents the spatiotemporal

changes in the map of interest for group visitors. The visitors

were students on the educational school excursion and might

have had limitations in time. Their behaviors were relatively

dynamic because they often formed a small group and kept

moving on to the next exhibit.

We also explored sites of interest to evaluate collection

layouts in the exhibition room. For this purpose, we first

summed up the sequence of heatmaps to find an accumulated

map of interest for a specific period. We then normalized the

grid pixel values in the accumulated map by the maximum

pixel value. This facilitated us to explore meaningful hotspots

in the exhibition space. Each result at the top of Fig. 9 shows

an accumulated map of interest for a single day.

We also wanted to identify particular hotspots where visitors

are likely to stay in the same location in the museum space

for extended periods (i.e., several minutes). This inspired us to

compute pixel-wise multiplications of temporally consecutive

heatmaps as intermediate distribution maps and then accumu-

late them. The bottom row of Fig. 9 shows such maps of in-

terest, representing sites of interest at which visitors remained

for some time. Note that in this experiment, we computed

the pixel-wise multiplication of six temporally consecutive

heatmaps, which implies that the resulting maps of interest

clarify the spatial positions where visitors were likely to stay

for five minutes or more.

Fig. 9(a) indicates hotspots in the exhibition room on the

free open day when the museum accommodated many groups

of visitors. The top figure presents the typical distribution of

interest when we integrate heatmaps for a relatively long pe-

riod, for example, a month. Conversely, fewer visitors yielded

smaller hotspot areas that were sparsely distributed in the

exhibition space, as depicted at the top of Fig. 9(b). Fig. 9(c)

at the top shows that another small set of visitors left relatively

many hotspots in the map of interest, while the hotspot areas

are all small and isolated. The last two cases imply that most

visitors were individuals and likely to stay around the exhibits

they preferred. The corresponding figures in the bottom row

show the hotspot areas at which visitors were likely to stay

for five or more minutes. To our surprise, the hotspots for

the five-minute stay do not necessarily coincide with those we

found by simply integrating all the heatmaps for the period

we saw in the top figures. This helps us to discriminate sites

of interest through which many visitors just passed from those

where they stood still to pay particular attention.

C. Analysis and Discussions

Fig. 10 details the collections exhibited in the room asso-

ciated with the Ancient (i.e., Tumulus) period. According to

the hotspots we extracted from the maps of interest in the

bottom row of Fig. 9, we can claim that ancient bowls and

dishes made of stone, old farm tools, and items of the local

Buddhist culture significantly attracted visitors to the museum.
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(a)

(b)

Fig. 8. Maps of interest visualized as heatmaps. Spatiotemporal changes in the map for (a) individual and (b) group visitors. The positions of visitors are
marked as disks.

(a) August 21, 2021 (b) December 21, 2021 (c) December 23, 2021

Fig. 9. Integrals of the map of interest. Top: Accumulating maps of interest for one day. Bottom: Accumulating pixel-wise multiplication of six temporally
consecutive maps for one day. (a) The map of interest presents a relatively wide distribution of visitors if the number is high. (b)(c) Locally limited distributions
appeared when the museum accommodated fewer visitors.

124 3

coffins for 
ancient graves

clay figures
for ritural use

miniature of a
keyhole-shaped
mound

map of
keyhole-shaped
mounds

ancient bowls
and dishes
made of stone

ancient farm
tools

Buddhism
in the locality

statues of
Buddha

ancient
cooking stove

ironwork ruins

history of the
old province
in north Japan

vases in the
ancient era

miniature of an
ancient warehouse
for grain as tax

Fig. 10. Contents exhibited in the room featuring the Tumulus period.

The museum set the presentation boards in front of these three

hotspots in the exhibition; hence, visitors may stand still to

read the descriptions. On the other hand, the top row of Fig. 9

reveals that the area on the right of the room was relatively

congested with visitors. However, they left this area within a

short period, probably because this point is the starting point

of the exhibition in this room, and just stopped to figure out

the overall contents of the room. Another observation suggests

that visitors were more interested in the exhibition of key-hole-

shaped mounds (i.e., ancient Kofun graves) and ironwork ruins

than other collections.

Our approach helps curators to improve the layout of

collections in art galleries and museums by inferring the

visitors’ preferences through visual analysis. However, the

proposed composition for maps of interest is still limited to

visualizing the spatiotemporal positions of visitors and cannot

explicitly identify which collections they intentionally view

around them. Accuracy in identifying spatial positions needs to

be further improved by simultaneously employing other types

of sensors. Installing more sensors and devising their spatial

configuration may alleviate the accuracy problem by reducing

unwanted occluded areas. Implementing this approach on the

Raspberry Pi computers remains to be tackled so that the

curators can observe the congestion of visitors in real time.
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VII. CONCLUSION

This paper has presented an approach to visualizing the spa-

tiotemporal maps of interest reflecting the viewing behaviors

of visitors in the exhibition space. Our technical contribution

lies in the new approach for visualizing the spatial layout of

visitors in the exhibition room through single-board computers

equipped with sensors. This was accomplished by employ-

ing machine-learning-based object detection and homography-

aware 3D reconstruction techniques. We also transformed

changes in the spatiotemporal layouts of visitors as a contin-

uous distribution map of viewing interest and visualized them

as dynamic heatmaps. Visual analysis of dynamic maps of

interest and their integrals over eight months of measurement

data effectively clarified the positions of underlying hotspots

and their associated collections the visitors most preferred.
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