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Fig. 1: The interface of DelLVE, after progressing through a full dataset on biology.

Abstract—While previous work has found success in deploying visualizations as museum exhibits, it has not investigated whether
museum context impacts visitor behaviour with these exhibits. We present an interactive Deep-time Literacy Visualization Exhibit
(DeLVE) to help museum visitors understand deep time (lengths of extremely long geological processes) by improving proportional
reasoning skills through comparison of different time periods. DeLVE uses a new visualization idiom, Connected Multi-Tier Ranges, to
visualize curated datasets of past events across multiple scales of time, relating extreme scales with concrete scales that have more
familiar magnitudes and units. Museum staff at three separate museums approved the deployment of DeLVE as a digital kiosk, and
devoted time to curating a unique dataset in each of them. We collect data from two sources, an observational study and system trace
logs. We discuss the importance of context: similar museum exhibits in different contexts were received very differently by visitors. We
additionally discuss differences in our process from Sedimair et al.’s design study methodology which is focused on design studies
triggered by connection with collaborators rather than the discovery of a concept to communicate. Supplemental materials are available

at: https://osf.io/z53dq/
Index Terms—Visualization, design study, museum, deep time.

1 INTRODUCTION

Digital visualizations can make for effective and engaging museum
exhibits for many reasons including the potential for interactivity and
their ability to expose large audiences to scientific datasets [9,17]. How-
ever, designing such interactions is still a challenge, particularly when
considering the diversity of museum contexts. We define a museum
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context as a specific physical space within a specific museum, with all
concomitant attributes of how it is experienced by visitors including its
theme, style, size, intended use, exhibits, and the audience who visits
that space. Different rooms within a single museum may entail differ-
ent contexts. Given the differences in user behaviour documented by
O’Reilly and Inkpen in varying visualization study environments [23],
we hypothesize that museum context will also play an important role in
visitor behaviour.

In this design study, we present a Deep-time Literacy Visualization
Exhibit (DeLVE). DeLVE is an interactive tool that museum visitors
can use to explore past events across different scales of time, designed
with the intention of improving visitors’ sense of deep time: a geoscien-
tist term for the very long periods of time of geological processes [29].
In particular, we designed DeLLVE to promote proportional reasoning,
one important skill associated with deep time, through comparisons
of the different scales. DeLVE addresses five requirements we identi-
fied through consultation with museum staff. Two are high-level and
museum-internal: Deploy and Curate. Two are high-level and visitor-
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facing: Engage and Inspire. One is specific to our educational focus of
proportional reasoning and visitor-facing: Compare.

While we did not begin the project with deployment agreements, we
developed collaborative relationships early on with three local museums
and successfully deployed an instance of DeLVE in each of them. At
the time of submission, DeLVE has been deployed for over one year,
and two of our collaborating museums have committed to long-term
deployment and are working to find final locations, datasets, and design
signage to support the exhibit. We conducted an observational study in
these three institutions and collected system trace logs. Our preliminary
analysis of the data from these two sources suggests that museum
context impacts visitor behaviour, and could inform future work which
studies the impact of differences in environment or audience in more
depth. Finally, we reflect on the project process, and discuss differences
between standard visualization design study methodology and that for
presentation-focused design studies.

We present three primary contributions. First, the task abstraction,
design requirements, and data abstraction for learning about deep time
in museums. Second, the design and development of the DeLVE mu-
seum exhibit. Third, the results of and reflections from the deployment
of DeLVE in four museum contexts across three institutions, based on
the analysis of observations and system logs from visitor usage.

We also provide two secondary contributions: a visualization tech-
nique for visualizing data with quantitative measures, such as past
events, on multiple scales, and an extension of Sedlmair et al.’s design
study methodology [25] to concept-first design studies.

‘We do not validate DeLVE or our proposed visualization technique’s
task, design, or long-term educational impact. Given our opportunity
to deploy in multiple institutions, we instead choose to investigate
whether museum context impacts visitor behaviour. Other assessments
are beyong the scope of this paper.

2 RELATED WORK

We now discuss related work, divided into visualizations as museum
exhibits, deep time education in formal settings, visualizations of mul-
tiscale data for presentation, and design study methodologies.

2.1 Visualizations as Museum Exhibits

We discuss related work from other visualization research conducted
in museums. Designing museum exhibit visualizations brings many
challenges that are different from designing for data analysts or other
professionals. Existing literature in this domain include design studies
[4,9,11,17,27] and empirical studies [5, 12, 18,22], many of which
contribute important design considerations, challenges, and principles.

Many museum visitors are personally motivated to engage with ex-
hibits. In order to promote meaningful engagement, designs must both
attract and sustain visitors [9, 11] within ten seconds [13]. Visitors are
attracted to exhibits through entry points, after which they may choose
to engage deeply. For digital exhibits, the use of special entry point
screens that are disconnected from the educational content is discour-
aged, and the merging of visually-interesting and engaging components
with educational content is beneficial [4]. Additionally, making the
entry points personally meaningful further supports engagement [22].

Length and type of engagement with museum exhibits is diverse. In
some cases, visitors may engage for a very short time, so designs must
be fast to decode, interpret, and gain value from [5,9, 11]. Designers
also need to prioritize which data and functionality is given priority so
that short interactions can still have potential for teaching key concepts
[4,17]. Length of engagement can also be long, indicating deeper
exploration, in which case visitors should be rewarded with additional
insight [11]. While some visitors may be open to exploring large
datasets, others may become overwhelmed and discouraged, so it is
important to support both exploratory and guided engagement styles
[11,17].

Museum visitors are a diverse group of people. They could be any-
where from novices to experts, so designs should not assume prior
knowledge but instead provide information when necessary [9, 17].
Users can also explore museums in groups and designs should support
multiple users in viewing and interacting with the exhibit [4,9, 11].

Finally, over-use of complex scientific data and over-emphasis on accu-
racy can lead to misconceptions; careful selection of key concepts and
visual simplicity can be beneficial for visitor learning [4,17].

The learning goals of museum visualizations in existing literature
primarily focus on the specific datasets they visualize [4,9,11,17,27].
However, our higher-level learning goal of promoting proportional
reasoning does not rely on any specific dataset; it can be enabled by
any dataset which follows the data abstraction presented in Section 4.4.
This objective differs from design studies in the existing literature,
which do not describe specific high-level learning goals for museum
visitors who interact with their exhibits.

In addition, previous museum visualization studies deploy their
exhibits in single institutions. Through multiple deployments, we
hope to better understand how varying museum contexts affect visitor
behaviour with a common exhibit.

2.2 Deep Time Formal Education

Many geology courses teach concepts that require an understanding of
deep time. Because of this requirement, it can be included, sometimes
even implicitly, in introductory geology, historical geology, structural
geology, geomorphology, and geology field work classes [8]. The
geoscience education research literature also includes specific learning
exercises for understanding deep time through proportional reasoning,
such as one activity where students interact with an increasingly com-
plex visual representation of time-based data [10] and one from Resnick
et al. where students continuously map larger and larger time periods to
the same physical space while indicating where previous time periods
appear [24]. While these deep time learning techniques show evidence
of success in teaching students about deep time, they take too long to
incorporate into a museum exhibit: the time required ranges from many
minutes to many hours, while in contrast we aim for visitors to interact
with the exhibit for between one and five minutes. Despite Resnick
et al. being infeasible as a museum exhibit, we are inspired by their
approach and design DeLLVE to conduct a similar, but faster, exercise
in a digital exhibit.

2.3 Visualizations of Multiscale Data for Presentation

Our work is informed by the design space and high-level strategies
for visualizations with large scale-item ratio proposed by Anonymized
et al. [2], which analyzes a collection of 54 such examples covering
both analysis and presentation use cases, drawn from both academic
literature and real-world use. In DeLVE, we use the strategy they call
Familiar Zoom, which entails zooming through a series of scales that
include at least one familiar, concrete scale.

DeLVE’s design uses concrete scales, a technique for helping people
understand unfamiliar measures by relating them to familiar measures
[20], to support museum visitors in relating to and understanding deep
time. We were inspired by Chevalier et al.’s taxonomy of the object
types and measure relations involved with concrete scales, and their set
of strategies for using concrete scales [7].

2.4 Design Study Methodologies

Sedlmair et al.’s design study methodology is a nine-stage process
model that identifies specific stakeholder roles [25], but their general-
case methodology does not adequately suit all design studies, leading
researchers to develop adaptations of it for specific scenarios. Syeda et
al. constructed a design study methodology for expedited design studies,
specifically to support the teaching of visualization [26]. Oppermann
et al. constructed a version for data-first design studies, where the
study is prompted by the acquisition of data rather than stakeholder
analysis questions [21]. However, previous work does not address
how to conduct design studies for presentation-focused scenarios; we
address that gap in this paper.

3 PROCESS

This project took place from May 2022 to March 2024. The four
authors of this paper make up the design team, which is an internal
collaboration between a two-person visualization (vis) team and a
geoscience education researcher (GER) team working at the same
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Fig. 2: DeLVE project timeline, broken down according to its four stages.

institution, who initiated this project on educating museum visitors
about deep time. We also work with the external collaborators of
museum staff at three museums in a North American city: two on-
campus museums focused on geoscience and biology respectively,
and one general science centre in the city core. We worked with
multiple staff from each museum, primarily for understanding their
goals, gaining their feedback on designs, and deploying our exhibit.

We divide the project into four stages, as shown in Figure 2: require-
ment analysis and abstraction, design and development, deployment,
and evaluation and analysis. The requirement analysis and abstraction
stage involved literature review and interviews with museum staff to
collect requirements, and multiple rounds of reflective synthesis to
refine them. The design and development stage involved weekly de-
sign and prototype iteration. We succeeded in deploying DeLVE in
three locations. Deployment happened differently at each of the three
museums, but always started with a deployment approval meeting and
involved continuous communication between the design team and the
museum staff. At each of the venues, museum staff curated content
to display that connected to their collections. During the evaluation
and analysis stage, we conducted a study of museum visitors as part
of our evaluation, drawing from two sources: direct observation of
visitors, and analysis of system trace logs. We then reflected on the
entire project. We discuss the process details of each of these four
stages in Sections 4, 5, 6, and 7 respectively.

4 REQUIREMENTS AND ABSTRACTIONS

‘We present our requirement collection and analysis methods, task ab-
straction, requirements, and our data abstraction.

4.1 Methods

We began with ideation, as we had begun the project with the broad goal
of making a visualization-based museum exhibit related to the concept
of deep time. We eventually narrowed our scope to a foundational
aspect of deep time: reasoning about numbers at varying and often
extremely large magnitudes, a skill called proportional reasoning.

We then conducted remote semi-structured interviews with museum
staff at local museums to better understand the internal processes and
goals of their institutions, get feedback on project ideas and assess
the level of buy-in for collaboration, and narrow down our project
scope. In contrast to previous visualization design studies focused on
museums, we did not start the project with an agreement to work with
a partner organization, requiring assessment of whether institutions
were interested in collaboration at an intermediate stage. We conducted
four expert interviews in total, each of them around one to one and
a half hours, each with one or two museum staff. There were six
total participants, two from each of our three collaborating museums,
all recruited through existing connections from the GER team. We
provide the interview script and transcripts in supplemental materials.
All three museums indicated strong interest in collaboration, leading
us to continue with all three and study differences in visitor behaviour
across multiple deployments in different museum contexts.

From the interviews, we collected a list of museum staft goals. Some
of them, such as providing visitor access to specimens, were infeasible
for us based on our resources and expertise, and we deemed them to be
out of scope. After determining which goals were in scope, we framed
them as requirements for our design.

4.2 Task Abstraction

While ideating, we identified many potential tasks involving deep time,
including understanding big numbers [6, 24]; orderings, timings, and
causalities of events from Earth’s past [8, 10, 15, 16,29]; and how rates
of change affect geological processes [8, 14].

As we narrowed our focus to supporting proportional reasoning,
we investigated existing methods for teaching the concept. We iden-
tified Resnick et al.’s classroom exercise, described in Section 2, as
foundational inspiration [24]. While the original activity is done using
physical materials, we aim to facilitate a faster version of the experience
through digital interaction. This existing literature indicates that having
learners make comparisons between time periods of different magni-
tudes can help with learning proportional reasoning. We thus focus
on anchoring and situating relatable time scales to more extreme ones
as an appropriate focus for in this exhibit. Accordingly, we selected
compare varied-magnitude time periods as the primary task.

4.3 Design Requirements

We identified five requirements to address through our design: Deploy,
Curate, Engage, Inspire, and Compare. The first two requirements
are museum-internal requirements and the final three are visitor-facing
requirements. The first four are high-level requirements that pertain
to most museum contexts; the last is more specific to our situation.
We omit lower-level details from our high-level requirements to retain
generalizability.

4.3.1

Deployment of a research project within a museum requires buy-in
from the staff at that institution. Our first requirement is to find and
build collaborations with staff at local museums both to understand
their needs and to create an exhibit they feel comfortable deploying for
their visitors (R-Deploy).

R-Deploy

4.3.2 R-Curate

All exhibit requirements rely on displaying suitable content for the
environment and its audience, including connecting to themes and other
exhibits. As museum staff understand these aspects best, we want to
provide them with the ability to curate the content displayed to visitors,
even if they do not have technical expertise with computation. Our
second requirement is to ensure that content creation, curation, and
loading is easy, fast, and flexible (R-Curate).

4.3.3 R-Engage

Our third requirement is to engage visitors (R-Engage). Visitor engage-
ment is a prerequisite to all museum learning goals; before visitors can
learn and enjoy, they have to engage. Although previous design studies
that focus on the use of visualization in museums do situate their work
in terms of targeting engagement and handling broad audiences, as
discussed in Section 2, the full implications of the shared dependencies
from R-Engage to specific learning goals have not been sufficiently
discussed in the visualization literature.

Engaging, for example through enjoyment or interest, gives museum
visitors positive associations with science and learning, which our mu-
seum staff collaborators indicate is particularly important for younger
visitors. Such non-analytical purposes of visualization are important
to consider [3]. To engage with an exhibit, visitors must first notice it,
understand that it is intended for them, and find it intriguing enough to
investigate further.



Exhibit designers do not expect to achieve success with the intended
learning goals of an exhibit with every visitor; exhibits where only
a small percentage of visitors achieve an intended specific learning
outcome beyond engagement are often considered highly successful.
This success condition is a stark contrast with more formal learning
environments like classrooms, where only a few students meeting
intended learning goals would be a problematic outcome.

Similarly, visualization design studies with exploratory data analysis
goals typically aim to support all target users for all goals and tasks.
Our situation, where the dependencies between these goals lead to
expected drop-offs at each step, is less common.

4.3.4 R-Inspire

Fostering positive relationships with science is a priority in museums,
especially the family- and child-oriented ones. Our fourth requirement
is to inspire curiosity in visitors through the presentation of a variety of
interesting, and potentially surprising, pieces of information (R-Inspire).
Even with on-the-spot learning, visitors may remember information
later and investigate it further or share it with others. Museum staff are
also interested in inspiring behaviour change and future careers, but
studying these long-term impacts is outside the scope of this study.

4.3.5 R-Compare

Directly supporting the finalized primary task, to learn about deep time
by comparing varied-magnitude time periods, is our final visitor-facing
requirement (R-Compare). We deemed it feasible to design an exhibit
to accommodate and promote this comparison, inspired by Resnick et
al.’s classroom exercise [24]. This requirement specifically addresses
the targeted learning goal of this project, in contrast to the previous
four extremely general requirements.

4.4 Data Abstraction

The final requirement of supporting comparison of varied-magnitude
time periods (R-Compare) is not tied to any specific dataset. Rather,
the content curation requirement (R-Curate) reflects the need for mu-
seum to create appropriate datasets that tie in to their own museum’s
collection and inspire visitors (R-Inspire). We identified characteristics
that curated data must have to address the Compare requirement.

We define a dataset as a list of values, split into ranges. A value
is a single data point, defined by its measure: a single number. In
addition to a measure, each value also has a name. A range is a pair
of start and end measures. Ranges contain values whose measures are
between the range’s start and end measures. A dataset is split into
ranges by indicating which values delimit the ranges. The entire range
can optionally be given a name.

The DeLVE data abstraction requires the ranges of curated datasets to
have three key characteristics: ranges must be monotonic, meaning they
are ordered from smallest to largest start values; contiguous, meaning
neighbouring ranges share edges; and disjoint, meaning individual
ranges do not overlap. This abstraction is sufficiently general that
it could apply to non-temporal scenarios as well as the motivating
requirement of temporal comparison.

Moreover, we suggest that curators use at least a few ranges, ensure
between 3-12 values in each range, and that the ranges are approxi-
mately divided according to powers of ten.

5 DESIGN

We document our design methods, present the Connected Multi-Tier
Ranges idiom at the core of DeLLVE, and discuss the design of the
system as a whole. We then provide design rationale, and comment on
the implementation and architecture. Supp. §2 contains further discus-
sion of DeLVE’s design evolution, additional figures, and additional
implementation details.

5.1 Methods

The design and development of DeLVE and its core idiom began after
concluding the project preparation stage. We used paper-based proto-
typing for the first two weeks, then switched to rapid iteration via digital
prototypes for the next 7 months. During this initial development stage,

we used a sample dataset created by the research team which evolved
alongside the prototype and informed future dataset curation. Once
museum staff had curated their own datasets, we used them for testing.
The design team met weekly throughout this period. We also procured
additional feedback and suggestions through presentations to experts in
visualization, HCIL, and informal learning.

After analyzing and reflecting on the deployment results at M-Bio,
we did a design iteration just before deployment at M-Sci; the final
iteration came after reflecting on what we learned after 5 more months
of deployment.

5.2

The core of the DeLVE interface is the Connected Multi-Tier Ranges
(CMTR) idiom, a new technique that we propose for comparing varied-
magnitude time periods (R-Compare). Although it was motivated by
the specific need to showcase deep time, it could also be used for other
scenarios where large scale-item ratios are in play [2].

Figure 3 shows a diagram of the CMTR idiom, with annotations
highlighting the components. The CMTR idiom consists of stacked
tiers connected by relation curves and relation lines. The topmost tier
is the active tier, annotated as Figure 3a, and below it can be multiple
(zero or more) archived tiers. Figure 3 contains five of archived tiers,
one of them annotated as Figure 3b.

A tier is a multicoloured line with markers and labels. It is composed
of one or more ranges, each of which is encoded by a differently-
coloured segment, as indicated in Figure 3c. The measures in the
dataset are encoded using linear horizontal position with larger values
on the left, such that each segment spans between its left edge at the
position of its range’s start value and its right edge at the position of its
range’s end value. As such, the leftmost segment in a tier represents
the range with the largest start measure, and a tier’s start measure is the
start measure of the leftmost range.

Values are encoded with markers, namely rounded rectangular
boxes. The values in a tier’s leftmost range, the range with the largest
start measure, are shown with opaque black markers, as indicated by
Figure 3d, with name labels just above them. The values in the second
leftmost range are shown with translucent markers that have no labels.
Values in the other ranges are not visually encoded in that tier. In the
active tier, marker labels include the value measure itself below the
name; these are times in the DeLVE use case.

If the leftmost range in an archived tier has a title, that appears on
the far left; otherwise the name and measure of the range’s leftmost
value will be shown there. Value measure labels here use words such as
millions or billions rather than displaying numbers with many zeroes.

Each tier encodes all ranges of the tier below it plus the next con-
tiguous range. Each range is leftmost in only one tier, and in the tier
above that it is the second leftmost. Tiers are connected by colour-filled
relation curves, of which there is one for each range. A relation curve,
shown in Figure 3f, connects the start points of its range’s segments
across all tiers that include that range, with the region below the curve
filled with the range’s colour, as with a filled area chart.

Each value is encoded in two tiers. In the tier where the value’s
range is leftmost, the markers are opaque black, and in the tier where
the value’s range is second leftmost, they are translucent. In addition to
relation curves, tiers are connected by grey relation lines, as indicated
in Figure 3g. Each value has one relation line, which connects the
value’s associated opaque black marker in a tier above to its translucent
marker in the tier below.

The active tier is a special case as it has no tier above it. The range
with the largest start measure across all tiers only appears here, so there
is no relation curve for it. Also, values from the largest range across all
tiers only appear here, so there are no relation lines rising above them.

When the user interacts with the system to advance it, the next
value appears on the active tier through an animated transition. The
marker for the next value is added at the far left and the tier rescales to
include it. Simultaneously, all existing segments resize, the segment
for leftmost range grows to the right, the segments for the other ranges
become shorter and shift to the right, existing markers move, and a new

Idiom: Connected Multi-Tier Ranges
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labelled marker fades in. Figures 4a-b show the start and end of such a
transition.

A dynamic animation triggers when the newly added value is outside
the currently displayed range in the leftmost segment of the active
tier, with the following changes happening simultaneously. A new
segment, encoding the new range, grows within the active tier, starting
from the leftmost point and growing towards the right. As it grows,
the entire tier rescales to accommodate the new segment. The new
value appears in this new segment. The value markers in the active
tier’s now-second largest segment fade to translucent with the labels
fading out completely. A copy of the previous version of the active
tier instantiates behind the existing active tier and gradually animates
downwards to its destination below the active tier and above all other
archive tiers. A new relation curve gradually appears as the new archive
tier moves downwards, stretching between the leftmost segment in the
new archive tier and the now-second leftmost segment in the active
tier. New relation lines also gradually appear by stretching between
the event markers in those two segments. Three key frames from this
animation are shown in Figures 4d-f.

Tiers are vertically stacked with the tier with the largest start measure
on top and the tier with the smallest start measure on the bottom. The
spacing between the tiers is proportional to the multiplicative difference
between the start measures of the tiers. When archived, previous tiers
move down in screen space.

The CMTR idiom combines visual encoding and interaction to allow
users to gradually step through the list of values until the entire dataset
is simultaneously visible after reaching the final value.

5.3 DelVE Exhibit

We present DeLLVE, the Deep-time Literacy Visualization Exhibit, in
Figure 1. From top to bottom, it contains a title and optional subtitle, an
overall separate timeline, an instantiation of the Connected Multi-Tier
Ranges (CMTR) idiom, a media box containing additional description
and imagery for the active event, and buttons for navigation. The
CMTR idiom, as discussed in Section 5.2, uses the majority of the
screen space. As DeLVE focuses on deep time, our ranges are time
periods and our values are events. Additionally, we reduce the width of
the archive tiers to make space for the media box and buttons.

The media box shows event details for the active event. It contains
the event name, description, and image. The details can be curated
(R-Curate) to inspire visitors (R-Inspire) and connect with specific
topics.

The largest button, labelled Explore the Past, progresses the entire
system to the next event in the dataset. It updates the active event
and triggers all relevant dynamic animations. The Reset to Today
button removes all archive tiers and all active tier events except for
the one closest to present day, rescaling the active tier to match. The

Revisit Events button changes the active event to the one that appeared
directly before it. A revisited event is visually highlighted with a
hollow rounded black box around its labels. Multiple revisits only cause
changes in which event is highlighted, not with inverse animations to
“roll back” time. After revisiting, when the Explore the Past button is
used again, the highlighting happens in reverse until the user reaches a
new event and animations resume. We carefully chose the wordings of
these buttons to indicate to users that pressing, for example, Explore
the Past will show an event further back in history rather than one that
they had previously seen.

In addition to the buttons, pressing on an event label or marker
revisits directly to that event. Pressing anywhere else on the screen,
where there are no event labels and markers or buttons, will trigger the
Explore the Past button to be pressed, including a visually pressing the
button as if the user had interacted with it directly.

The overall separate timeline is a multicoloured line with three
labels, shown at the top of Figure 1. Similarly to the CMTR tiers, it
uses the same coloured segments to show time periods in the same
horizontal order on a linear scale. It also shows the highlighted event
with a labelled marker, again a black rounded rectangular box. Unlike
tiers, the time range is static and covers all events. The most ancient
event in the dataset is always visible on the far left of this timeline and
present day, labelled Today, is always visible on the far right of it. The
active event is labelled with You are here rather than the event’s name.
Segment colours are only visible to the right of the time of the CMTR
view’s most ancient displayed event across all tiers.

DeLVE supports three modes: interactive, animated, and dynamic.
In interactive mode, progression through events is controlled solely
by the user pressing buttons. In animated mode, progression through
events is controlled fully automatically at regular intervals. In dynamic
mode, progression through events is controlled by the user pressing
buttons, unless there is no interaction for a configurable amount of
time, at which point it begins automatically progressing. Automated
progression in dynamic mode can be stopped by the user at any point
by pressing the Let Me Interact! button, which is intended to encourage
interaction.

Figures 4a-f show six key frames from a walkthrough of DeLVE.
The video included in supplemental materials shows the look and feel
of DeLVE.

5.4 Design Rationale

DeLVE’s visitor-facing interface addresses the three visitor-facing re-
quirements: R-Engage, R-Inspire, and R-Compare. We considered both
initial engagement and prolonged engagement when thinking about
R-Engage. We intend for three aspects of design to support initial en-
gagement. We use animation and colour [18] to catch visitor attention
and images in the media box to gain initial interest. Once visitors have
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Fig. 4: Key frames from a walkthrough of DeLVE. a) The initial state, with only a single event. b) After clicking Explore the Past once. c) After
progressing to the second tier. d/e/f) Three frames from a single animation showing animation progressing from the most ancient event in the third
tier to the most recent event in the fourth tier.

approached the exhibit, we rely further on the images and animation to  range delimiters, DeLVE will automatically compute them to roughly
keep their attention, as well as the events themselves which we intend ~ group values according to powers of ten.

to be familiar and interesting. The media box is the primary facilitator We store logs of usage of DeLVE on a server hosted on the vis team’s
for R-Inspire, as it can present information and diagrams to the visitor.  university department servers as a remote-only Linux virtual machine.
Absolute and relative timing of events is the secondary facilitator of  The server code is in JavaScript using Node.js and Express.

this requirement, as visitors may find them interesting or surprising.

Finally, we designed both the CMTR idiom and the entire DeLVE 6 DEPLOYMENT
system to emphasize comparison between scales and events in support
of R-Compare. Users can compare the lengths of the segments with
shared colours across tiers, an instantiation of unitization from concrete
scales, or the vertical spacing between pairs of tiers, an instantiation
of analogy from concrete scales [7]. They can follow the logarithmic 6.1 Deployment Process
shape of the relation curves to see the relative length of a time period on
exponentially increasing scales, and can study the angles of the relation
lines that connect the tiers. In addition, the overall separate timeline
shows exponentially increasing change on a linear scale. When the
active event changes, the event marker moves to its new spot. However,
it does not visibly move until the active event is in a very ancient time
period, as all changes between events that are multiplicatively close
to present day subtend less than one pixel. We intend for this view to
cause surprise in users at how long it takes to see visible progress on
the linear scale of Earth’s history.

We note that geologist norms would use the opposite placement pat-
tern, where the longest time range is typically on the bottom, building
up to the shortest one on the top. We chose this placement so that
viewer attention can stay near the top of the screen to align with typical
screen fixation patterns, both because we believe the general public
is unaware of the geologist convention and to mirror Resnick et al.’s
teaching exercise [24].

After completion of the initial DeLVE prototype in February of 2023,
we met with our museum collaborators and made deployment plans.
See Supp. §3 for additional details on DeLVE’s deployment.

Through the expert interviews, we found that museum staff at all three
museums were very enthusiastic about collaboration. These domain
experts immediately offered to devote further time to talking with
us in support of the project, and advised us that there were unlikely
to be barriers to eventual deployment so long as we communicated
sufficiently. This outcome stood in contrast to the vis team’s concern
that gaining buy-in for deployment from gatekeepers would be a major
challenge; in contrast, the GER team was unsurprised as their past
collaborations had led to an awareness of the museum priorities and a
reciprocal approach where both parties were looking to benefit each
other.

We began the deployment process by holding deployment approval
meetings with museum staff; after followup communication, these led
to deployment approvals at all three museums: a biology museum
(M-Bio), a geology museum (M-Geo), and a science centre (M-Sci).
Receiving approval to deploy in all three museums shows success in
R-Deploy. While museums and science centers differ [28], below we
refer to them all as museums for simplicity.

Staff at all three museums were enthusiastic about our design due to
The front end of DeLLVE was created with JavaScript, HTML, and  our extensive background work and their general interest in supporting
CSS, primarily using the D3 library to create the visualizations. The research efforts, and wanted to deploy an instance of it in their insti-
interface we described in the previous section covers the visitor-facing  tutions. See Supp. §5 for the details and outlines of the deployment
side of the front-end. Museum staff and other administrators will also ~ approval meeting presentations and the guiding questions for the dis-
use the welcome and settings pages. The welcome page is the first  cussion, as well as supplemental material for the transcript files of those
page shown upon navigating to the URL, and users can choose to see  discussions.

a sample dataset in DeLVE without configuring any settings or to use Staff at all three museums contributed time and resources to deploy-
a custom dataset and configure custom settings. Using Google Sheets ment. Museum staff also devoted time to dataset curation, including
and a simple interface for data uploading allows for museum staff to  collective decisions on reading level, text description length, and num-
curate their datasets, meeting R-Curate. If curators do not provide any  ber of events as well as curation of actual data, fulfilling R-Curate.

5.5 Implementation and Architecture



Fig. 5: DeLVE, deployed as a digital kiosk in (a) M-Bio, (b) M-Geo, and (c)/(d) M-Sci.

We also encouraged museum staff to incorporate recent events, which
happened within visitor lifetimes, into their datasets to increase the
personal relevance of the exhibit [19].

Staff at M-Bio and M-Sci have committed to long-term deploy-
ment of DeLVE on their own hardware, showing additional success
in R-Deploy. To support this deployment, they are discussing final
deployment locations within the museums. In addition, staff at M-Sci
are developing a new dataset to fit with the context of the new loca-
tion. They are also designing signage to place around DeLVE to bring
attention to it and provide further information.

6.2 Museum Contexts

We deployed DeLVE in all three museums on large touch screen kiosks,
although the specific hardware differed. See Figure 5 for images of the
kiosks in context. Museum staff made deployment location decisions
based on available space, proximity to other relevant exhibits, and
availability of utilities such as power and internet. The three museums
had important differences.

M-Bio consists primarily of rows of cases and drawers with bio-
logical specimens. General audiences are welcome, and they provide
guided school-group tours and themed events.

M-Sci consists of differently-themed rooms with science-focused
educational activities and exhibits. They provide visitors with games
and other experiences to encourage them to think about high-level ideas
such as their connection with their community or the environment. M-
Sci is more family-oriented, so their audience includes more younger
children than the other museums. The DeLVE kiosk in M-Sci initially
stood in a hallway between exhibit galleries, near the entrance to a
gallery on deep ocean exploration (M-Sci-hallway context). Later,
M-Sci staff moved the kiosk to a different room themed around optical
illusions and physical puzzles (M-Sci-puzzles context).

M-Geo does not have a self-contained space; it is embedded into
rooms and walkways across two university buildings with most who
enter the space simply passing through. Its exhibits consisting mostly of
geological objects and geology-related text and images. The museum
provides guided tours and supports some coursework activities. The
vast majority of people who pass through the space are on their way
elsewhere, and do not engage with the exhibits; we eventually focused
our attention more on the other two museums where we could gather
more useful data.

At M-Bio, the other exhibits are heavily text based and incorporate
technical terms, and thus are more similar to DeLVE than those at
M-Sci, where exhibits are more playful and use simpler language. The
museum spaces also have architectural differences. In M-Bio, the space
is mostly made up of long hallways painted dark colours with little
natural light. M-Sci is bright, colourful, and open, with many skylights.
There are multiple differences between the audience distributions and
behaviours of visitors between M-Bio and M-Sci, including the age
distribution of visitors which skews younger for M-Sci. An additional
difference in museum curation between M-Sci and M-Bio is complexity
level consistency. Exhibits at M-Bio are mostly consistent with each
other in style and complexity level. At M-Sci, different rooms and
different exhibits appear to be designed for different age groups, so the
range of visitors can seek out areas appropriate for them.

7 EVALUATION

We evaluated DeLLVE using data from visitor observations and sys-
tem logs, collected during DeLLVE’s deployment. We first discuss the
methods of this data collection and analysis and then their results,
then present our analysis for evidence of meeting our visitor-facing
requirements and for differences between deployments.

7.1 Methods

We conducted our observational study in M-Bio from April 2023 to
February 2024, in M-Sci from August 2023 to March 2024, and in
M-Geo in December 2023. We observed visitors interact or not by
their own choice and did not intervene. During observation sessions,
a researcher sat nearby DeLVE and recorded any observations of in-
dividuals or groups who came within three meters of the exhibit. The
researcher tallied participants who came close to DeLVE but did not
engage with the exhibits and took more detailed notes on those who
did engage [1].

We conducted 25 observation sessions, totalling nearly 37 hours of
observation, and resulting in 95 observations of visitors engaging with
DeLVE without intervention. We conducted 16 of the sessions, making
up over 24 hours and 44 observations, at M-Bio; 3 of the sessions,
making up just under 5 hours and 13 observations, at M-Sci’s first
deployment location (hallway); 5 of the sessions, making up just under
6 hours and 38 observations, at M-Sci’s second deployment location
(puzzles); and 1 of the sessions, making up 1.5 hours and 0 observations,
at M-Geo. Transcribed versions of the observations are available in the
supplemental material, and full forms and protocols are in Supp. §5.

We calculated statistics using observation tally counts. The first
author coded our observations with respect to our three visitor-facing
requirements. We also consider statistics from our system trace logs,
which we group into interaction sessions delimited primarily by breaks
in logs. We use both observation and trace log data in both of our
analyses, requirement-focused and difference-focused.

7.2 Requirement-Focused Analysis

We now report findings from our evaluations in terms of our three
visitor-facing requirements, discussing both those that led to modifica-
tions to the design and overall findings.

7.2.1

Engagement is a prerequisite for learning and enjoying, and both pre-
vious museum visualization work and our museum staff collaborators
note it as a challenge. We now discuss our overall findings from all three
museum deployments, including 95 observations of visitor interaction
across M-Bio and M-Sci, in terms of engagement.

Many observed visitors did not appear to notice DeLVE at all. Of the
smaller number who visibly noticed DeLVE, many would look away
immediately or only pause momentarily before moving on. Of those
who noticed DeLVE, about 18% chose to engage with DeLVE, either by
an extended watching of the animations, directly interacting using the
buttons, or a combination of both. Our museum staff collaborators at M-
Bio confirmed that our engagement levels were on par with other similar
exhibits, and their and M-Sci’s commitment to long-term deployments
of DeLVE show that staff at the institutions see the exhibit as successful.

R-Engage



Among those who engaged with DeLVE, 75% spent around 30
seconds or more with it. Thus, the majority of engaged users would
be considered “hooked” [13], meaning museum-visitor engagement
beyond a ten-second threshold. 25% of these participants spent two
minutes or more engaging with DeLVE, with 3% spending over five
minutes. The mean length of the estimated interactions from the logs is
94 seconds and the median is 25 seconds.

‘We made minor iterations on DeL.VE’s design to increase engage-
ment based on our observations. We made the buttons more visu-
ally salient to make DeLVE’s interactivity more obvious, decreased
the timeout before initiating the automatic animation mode to make
DeLVE more likely to be animating and catch participants’ eyes, and
implemented responsivity to touches anywhere on the screen to en-
gage participants who did not initially interact with the buttons. See
Supp. §2.1 for further detail on DeLVE’s evolution.

The long interaction times indicate success with engagement and
that accomplishing further goals is feasible.

7.2.2 R-Inspire

We observed clear indications of curiosity among visitors who engaged
with DeLVE, at two levels. First was the initial curiosity caused by
the colours and animation, which is DeLVE’s entry point [4]. Once
visitors began interacting, 24% of participant groups showed signs
of curiosity about the actual content within DeLVE, which was our
goal. Observed curiosity took many forms, including that of facial
expressions of surprise such as raised eyebrows and open mouths and
behaviours indicating enjoyment such as laughing. Other participants
indicated curiosity by their chosen topics of discussion with other group
members, either by asking each other questions, mentioning specific
information they found interesting, or educating each other. We also
observed participants using their phones to search the internet or take
pictures, potentially to investigate something further after they ended
their interaction. We found it was more than three times more likely for
a group to show behaviours indicating curiosity than for an individual
to do so. However, most groups had two or more members, making
up 54% of all observations. Given that many of the indications of
curiosity that we noted in our observations involved communication
between multiple individuals in a participant group, we believe that
many of the lone individuals we observed may have become curious
while interacting with DeLVE but did not express this curiosity due to
a lack of other group members to express it to.

These behaviours indicate that DeLVE successfully inspired partici-
pants’ curiosity about the content in DeLLVE’s datasets.

7.2.3 R-Compare

We observed 7 participant groups, or about 7% of all participant groups,
directly comparing scales, either verbally or via gestures. Visitors
talked about individual ages and times and gestured the timelines on
the CMTR and on the overall separate timeline, sometimes appearing
surprised by the ages they saw or saying so out loud to another visitor.
Similar to R-Inspire, our indications of comparison relied on visitors
having someone to communicate with, so individuals may have made
comparisons without externalizing them. Of the groups with more
than one individual, our observations of comparison make up 13%.
Further, many groups, despite not engaging alone, did not visibly or
audibly communicate throughout their engagement. Of those that did
communicate verbally, many groups discussed events without explicitly
making comparisons, or their discussion was too quiet too hear or in a
language other than English. Many others may have made comparisons
without communicating them in a way that was observable by the
researcher, even those in groups.

These observations of visitors show that DeLVE is successful in
facilitating comparison between different time scales.

7.3 Difference-Focused Analysis

We only analyze differences between M-Bio, where DeLVE stood in a
space with other exhibits with similar content; M-Sci’s first deployment
location, where DeLVE stood in a hallway far from other exhibits (M-
Sci-hallway) and M-Sci’s second deployment location, where DeLVE

stood near other exhibits that were themed around puzzles and illusions
and did not have similar content (M-Sci-puzzle). We did not observe
any participant interactions in M-Geo, so we do not discuss it further
here. See Supp. §4 for figures showing observation breakdowns and
system log statistics.

One major difference between our observations of participants at M-
Bio, M-Sci-hallway, and M-Sci-puzzle was the number of individuals
who noticed DeLVE, with far fewer at M-Sci-hallway. In contrast, M-
Bio and M-Sci-puzzle had similar numbers of participants who noticed
DeLVE. Similarly, we observed that most participants at M-Sci-hallway
who engaged with DeLVE did so for less than a minute, in contrast
to our observations of M-Sci-puzzle and of M-Bio to an event greater
extent, where participants were much more likely to engage for one
minute or more. We found similar results when analyzing for the
amount of the dataset that participants clicked through and the number
of event descriptions that participants read.

Analyzing durations from the log data, we again find that M-Bio
durations are much longer, with a mean of 94 seconds, than M-Sci-
hallway and M-Sci-puzzle durations, which have means of 42 and 37
seconds respectively. We also note that the number of interactions per
month in M-Sci-puzzle is higher than that in M-Sci-hallway despite
observing over 60% more visitors passing through the latter’s proximity
zone. Interestingly, we find that M-Sci-puzzles’s median interaction
duration in the trace logs is much closer to M-Sci-hallway’s, and is in
fact 15% shorter. This difference between our observations and trace
logs may come from a type of interaction we observed very often in M-
Sci-hallway but rarely in other deployments where participants would
tap on the exhibit buttons as they moved past it. If multiple participants
tapped on the screen within one minute of each other, we would count
these button presses as the same session because, in the system trace
log data, it would be indistinguishable from a single participant who
tapped on a button twice.

The low level of engagement at M-Sci-hallway is likely due to its
location in a hallway. Because there are no other exhibits nearby, we
observed most participants in the area simply passing through, focused
on finding another room with exhibits to interact with in it. While
M-Sci-puzzle’s engagement levels were closer to M-Bio’s than M-Sci-
hallway’s, they were still lower. This situation could be due to the
difference in visitor age distribution: participants in M-Bio tended to
be older. On one specific day in M-Bio, the largest audience in the
museum was children on a school field trip. On that day, the distribution
of observed behaviours was much more similar to that we observed
in M-Sci-hallway than the other days in M-Bio. Another potential
cause of this difference in engagement between M-Bio and M-Sci-
puzzle is the latter’s difference in content theme from other exhibits in
the surrounding area. It is possible that visitors at M-Sci-puzzle who
engaged with DeLVE ended their engagement early because of its lack
of connection to the exhibits the visitors had recently interacted with.

8 DiscussION

‘We now reflect on the design study, discussing the generalizable find-
ings of our visitor studies and the differences between our design study
process and previously documented approaches.

8.1 Context Matters Inmensely

We found significant differences in visitor usage of DeLVE in different
museum contexts. While previous museum visualization papers are
informative, their design may have been received very differently and
they may have produced different conclusions had they deployed the
same exhibit in a different institution or even a different room within
the same institution. Our findings echo the results of O’Reilly and
Inkpen, where busy environments full of distractions yield different
results than the focused attention possible in “white rooms” [23].
Museum exhibit designers need to understand the audience and
context of the museum spaces they are deploying in to make an effective
design. It is well known in museum visualization literature that museum
audiences are very diverse, a finding reflected in our observations as
well, but museum visualization designers may still need to consider
the specific distribution of age, expertise, motivation, and other traits



among that audience in order to tailor the design accordingly. The
physical context of an exhibit may also be a factor in its success, and
designers should consider what the visitors’ expectations are within
the exhibit space in order to create an effective and engaging exhibit,
considering what types of exhibits are nearby, what kind of content
is in those exhibits, and how the space is designed. Museum staff
are experts in the audiences and contexts of their own museums, and
can often inform us about them if we ask the right questions. Going
forward, museum visualization designers should not be content with
simply knowing their user pool is diverse and that they are deploying
in a museum, but should investigate the details.

8.2 Concept-First Design Study Methodology

While conducting this design study, we observed that many aspects of
our process differed from that described in the DSM of Sedlmair et
al. [25]. Although we noticed these differences early on, after reflection
we decided to continue the project without forcing ourselves to conform
to the standard. We believe that these differences arose not because of
an unsuccessful project, but because our design study was triggered
by the discovery of a concept to communicate, which is later refined
into a presentation-focused task, and connection with collaborators
and the acquisition of data happen later. In contrast, the DSM sug-
gests a collaborator-first approach where finding collaborators occurs
early, followed by the construction of data and task abstractions before
beginning the Design stage. Oppermann et al.’s proposed data-first
design study methodology starts with acquiring data early, with task
abstraction and connection to collaborators coming afterwards, again
before the Design stage [21].

The concept-first design study applies primarily to presentation-
focused design studies, as they involve the presentation of already-
gleaned information, or concepts, rather than the gleaning of new
information. However, presentation-focused design studies may also
be triggered by connection with collaborators or the acquisition of
data. The discovery of the concept to present is the defining trait of our
process.

We now discuss the individual stages in which our process dif-
fered from the DSM, providing alternative methodological guidance
for presentation-focused design studies.

Discover. With the Discover stage now occurring before the Win-
now and Cast stages, we find that it differs in who the visualization
researchers learn about the problem from. Rather than asking or ob-
serving front-line analysts to understand pre-existing work tasks, the
researchers must work with presentation experts and content-specific lit-
erature to understand the concept to be communicated. The researchers
then abstract the concept into a set of visualization tasks which users
can conduct to help them understand the concept.

Winnow. Since concept discovery occurs before connecting with
collaborators, winnowing should focus on finding suitable collaborators
for the chosen concept. While this project began as a collaboration
between the vis team and the GER team, our collaboration with local
museums was not confirmed until a later stage, and we chose to work
with these museums due to the applicability of our chosen concept to
their educational goals.

Cast. We found differences between the roles described in the DSM
and those involved in our project. The largest difference is with the
front-line analyst, a role which did not exist in our project. Instead,
we have viewers, describing the museum visitors, who seek to learn
about previously-gleaned insights rather than analyze data for new ones
and who are the targets of the exposition in the exhibit or exercise. By
definition, viewers are not domain experts as they are described in the
DSM. Additionally, where the DSM implies that all roles outside of
the researchers are held by members of a collaborating institution, the
users in our design study were instead the individuals who were served
by the institutions. This level of indirection meant that target users
were further removed from the other roles.

Museum staff and the GER team were both domain experts, with
the museum staff mostly providing expertise on presentation methods
in the museum context and the GER team mostly providing expertise
on the education methods for the content of the project, deep time. To

differentiate between these groups, we label the museum staff as pre-
sentation experts and the GER team as content experts. It is possible
that one individual could hold both roles, such as a university class
instructor who is an expert in both their topic and mode of presentation.

In our project, the museum staff held the gatekeeper role, however
without the same level of power as described in the DSM. While they
did have the power to approve or block deployment of the exhibit at
their institution, they did not have the power to block deployment in
other locations or to block access to data.

Acquire. Similar to Oppermann et al.’s data-first design study
methodology, we include an explicit Acquire stage, however it oc-
curs after the design stage in our process. The DSM warns against
beginning a project where data acquisition is uncertain during the win-
now stage. It argues that “real” data must exist and be accessible to
the visualization researchers. In contrast, we focused on refining our
concept to communicate in early stages, finding data to support us in
accomplishing this goal in a later stage. In fact, DeLVE’s datasets did
not exist prior to the project, and museum staff curated them specifi-
cally for this exhibit, using specifications for data acquisition that were
informed by the design rather than the other way around. While it is
important to consider early on whether the data one’s design relies on
will be available, acquiring or curating it must wait until the Design
stage so that the final deployments use data which adequately fits the
data abstraction.

Deploy. Finally, given the difference in users, validation of
presentation-focused design studies must differ. The DSM reports
that case studies are the most common form of design study validation,
but this method is likely insufficient for presentation-focused scenarios.
Learner groups in most educational environments are an extremely
large and diverse group. While a team of data analysts can simply
confirm the usefulness of a visualization tool for a specific analysis
task, researchers conducting presentation-focused design studies will
likely need to conduct more in-depth field studies with diverse sets of
participants to validate the project.

9 CONCLUSION AND FUTURE WORK

In this paper, we present a task abstraction for supporting proportional
reasoning through comparing varied-magnitude time periods. We pro-
vide a set of requirements for exhibits in museums, four of them very
general and one more tied to the specific learning goal of proportional
reasoning. We also identify a data abstraction to characterize how
datasets must be curated to support this learning goal. We present
the design and implementation of DeL.VE, including our Connected
Multi-Tier Range idiom, our proposed visualization technique. We de-
ploy DeLVE in three museums, which entailed achieving approval for
deployment and museum-staff curation of datasets from three different
institutions. We conduct and report on an observational study and a
trace log study to understand user interaction with DeLVE and how it
differs between varying museum contexts, including two different loca-
tions within the same institution. Finally, we reflect on the project and
discuss generalizeable insights for visualization-based museum exhibit
design and concept-first visualization design study methodology.

The GER team has committed to conducting a lab study on DeLVE’s
ability to improve users’ deep time knowledge and proportional rea-
soning ability. Given the long-term commitments to host DeL.VE at
M-Bio and M-Sci, future work could study participant behaviour in
the exhibit’s finalized locations. Since we designed the CMTR idiom
for supporting proportional reasoning for deep time, it may be less
applicable to other domains. Other future work on DeLLVE and the
CMTR idiom could investigate its application to other domains that
could include larger time scales than Earth’s formation, like astron-
omy, which is still related to deep time, or those that use shorter time
scales than deep time, like patient health data on the scales of days,
weeks, months, and years, which is not deep time but still exponen-
tially increasing. Future studies could also investigate using DeLVE
for visualizing scale differences in physical space rather than time, or
in formal learning environments such as university classrooms or labs.
Finally, future work could evaluate the CMTR idiom for a wider set of
usage environments, beyond the museum setting of the DeLVE exhibit.



SUPPLEMENTAL MATERIALS

All supplemental materials are available on OSF at https://osf.io/
z53dgq, released under a CC-BY-4.0 license. We provide a document
with additional details on the project including the prototype evolution,
deployments, result figures, and scripts and protocols. We also pro-
vide the datasets used for DeLVE during this project, the transcribed
data from our observational study, DeLVE’s logs, and transcriptions
of the expert interviews and workshops. The video showing DeLVE’s
look and feel is also available at https://youtu.be/jAIgn3n_-Ss,
DeLVE’s source code and instructions for running it are also avail-
able athttps://github.com/marasolen/deeptime. Finally, alive
demo of DeLLVE is available at https://deeptime.cs.ubc.ca/.
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