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Abstract. In the paper we propose ontology based scientific visual-
ization tools to calibrate and monitor various IoT devices in a uni-
form way. We suggest using ontologies to describe associated controllers,
chips, sensors and related data filters, visual objects and graphical scenes
to provide self-service solutions for IoT developers and device makers.
High-level interface of these solutions enables composing data flow dia-
grams defining both the behavior of the IoT devices and rendering fea-
tures. According to the data flow diagrams and the set of ontologies the
firmware for IoT devices is automatically generated incorporating both
the data visualization and device behavior code. After the firmware load-
ing, it’s possible to connect to these devices using desktop computer or
smartphone/tablet, get the visualization client code over HTTP, mon-
itor the data and calibrate the devices taking into account monitoring
results. To monitor the distributed IoT networks a new visualization
model based on circle graph is presented. We demonstrate the imple-
mentation of suggested approach within ontology based scientific visual-
ization system SciVi. It was tested in a real world project of an interactive
Permian Antiquities Museum exhibition creating.
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1 Introduction

According to the elaborate overview made by Internet Society [20], the key
issues of Internet of Things (IoT) are security, privacy, interoperability, legisla-
tive framework, emerging economy and development. In the same time, the level
of development automation tools for IoT is not high enough. As Texas Instru-
ments Inc., one of the biggest manufacturers of IoT-related microelectronics,
pointed, “IoT needs to be made easy for inexperienced developers” [27]. More-
over, nowadays the IoT developers community grows exponentially. Survey made
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by Tractica [28] shows that many enthusiasts become IoT developers. They cre-
ate Smart Systems for homes, scientific or artistic exhibitions, and just for fun.

Due to the lack of widely supported standards [20], development of IoT
devices often requires special software for designing, debugging and steering.
Consequently, high-level software tools for building and managing IoT applica-
tions in a uniform way are demanded.

Growing IoT networks embrace more and more different fields of life and
thereby produce huge quantity of heterogeneous data gathered by connected
things. IoT systems have to be intelligent enough to make these data observable
for humans, avoiding information overflow and ensuring comfortable cohabi-
tation of humans and smart objects. The overflow problem can be solved by
advanced semantic filtering of data performed inside the IoT network.

High complexity and granularity of IoT networks require powerful and
ergonomic analytics tools. Especially it relates to the role of Big Data visual
analytics in IoT. Modern visual tools for IoT should enable the user not only to
monitor device data, but also control the behavior of smart objects and config-
ure/reconfigure their network.

When it comes to IoT devices with different kinds of sensors, calibration and
monitoring tasks become complicated. Calibration has many forms and consists
in adjusting the parameters. These parameters rule the device to provide an
accurate measurement according to known model, ground-truth data from labo-
ratory instruments or already calibrated devices. Normally device manufacturer
performs the basic calibration, but in some specific cases user steering is also
required. For example, user may need to adjust the sensitivity of light detec-
tor to adapt it to concrete ambient lighting conditions. This kind of “user-side”
calibration is often empirical and thereby requires the tools to adequately data
monitoring, analyzing and predicting the adjustment results.

We propose to tackle the above mentioned IoT challenges using a single
software platform based on the scientific visualization methods, corresponding
rendering techniques and semantic filtering. Reusing of scientific visualization
tools enables graphical representation and visual analysis of data generated by
IoT devices and light-weight consumer robotic systems [23]. In this paper we
focus on the monitoring and user-side calibration issues.

During the previous research work we developed a concept of a knowledge-
driven multiplatform adaptive scientific visualization system (SVS), which can
be integrated with third-party data sources by means of high-level tuning with-
out source code modifications. We have implemented this concept in the system
called SciVi [22]. The behavior of this system is driven by the ontologies [9]
included in its knowledge base that describes the features of data sources, sup-
ported data filters, visual objects and graphical scenes. Thereby SciVi can be
easily extended to cover new visualization techniques and set up for commu-
nication with arbitrary data sources including software solvers and hardware
devices.

The aim of the paper is to present the extension of SciVi by self-service tools
for automated embedding in IoT devices. This extension enables IoT device
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calibration and monitoring supported by high-quality interactive visualization.
We demonstrate the results by an example of automated creation of interactive
IoT-based exhibits in the Museum of Permian Antiquities (Perm, Russia).

2 Key Contributions

In this paper we describe the new capabilities of multiplatform SVS SciVi (ver-
sion 3.0). The conducted research and corresponding development led to the
following key results:

1. Proposed the ontology-driven approach for high-level adaptable monitoring
and calibration of the heterogeneous IoT devices by means of scientific visu-
alization and semantic filtering.

2. Proposed the circle graph-based model to graphical depiction of IoT network.

3. Implemented new SciVi high-level tools based on suggested approach to auto-
mate the process of SVS embedding into IoT device firmware to enable built-in
visualization and steering.

4. Suggested the concept of interactive IoT-based museum exhibition, which
uses implemented tools. Demonstrated this concept by 3D-reconstruction of
Permian synapsid Dimetrodon grandis that exhibits the latest paleontological
research results.

3 Related Work

3.1 IoT Development Tools

Since IoT is an exponentially evolving field of computer science and engineer-
ing (28], there are literary hundreds of related development tools [17]. They
include software and hardware development platforms, middleware, operating
systems, integration software, stacks of technologies and protocols. But most of
these tools require very deep skills either in programming or in electronics, and
the modern trend is to create high-level solutions available for beginners, not
only for experts [27]. Such kind of solutions reduces IoT development time and
increases productivity, which enables to involve more people into IoT community.

The most popular high-level state-of-the-art software solutions are Process-
ing [18], Blynk [7], XOD [2] and NEXCOM IoT Studio [14]. The first system
provides the high-level programming language and the set of libraries to simplify
the development of light-weight electronic devices in terms of handling, trans-
forming and monitoring data gathered. Being a powerful programming toolset,
it still requires some additional developer’s skills and provides no visual pro-
gramming capabilities. Blynk is a visual programming tool enabling high-level
control over the firmware logic of electronic device. It is very ergonomic, but
lacks complex visualization capabilities, which are sometimes needed for data
monitoring. XOD and NEXCOM IoT Studio use data flow [13] visual program-
ming paradigm enabling user to compose firmware logic as a data transformation
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diagram. Data flow based programming is very intuitive and its effectiveness has
been proven in many different application domains. However as well as Blynk,
XOD and NEXCOM IoT Studio focus on the device logic providing just a basic
dashboard-based data visualization.

While the mentioned solutions perfectly suite for solving typical IoT tasks,
they cannot be easily extended for special cases like, for example, creating IoT-
powered interactive museum exhibitions (see Sect. 6).

3.2 Ontology Engineeing Applied to IoT

Knowledge-driven approach based on ontology engineering methods is agile and
handy for creating of complex systems [6]. Semantic Web technologies were
proven to be suitable for IoT many times. One of the first research works in
this field was made by Gyrard et al. [10]. As a result of this work best practices
of ontology engineering usage in a context of IoT are defined.

The state-of-the-art ontology-based solutions are described in [3,25,26].
These works leverages ontology-based methods to different aspects of IoT,
including network representation, security and interoperability issues. The
work [11] describes ontology-based approach to create middleware for IoT. The
work [8] describes powerful state-of-the-art ontology-based library code generator
OLGA, which is suited for IoT firmware programmers. Finally, W3C Consortium
published reusable ontology IoT-Lite of resources, entities and services related
to IoT [29].

Despite many successful results, the ontology-driven IoT monitoring and cal-
ibration issues are still open. According to our knowledge there are no popular
state-of-the-art solutions leveraging ontology engineering for visual analytics of
IoT-generated data (see Sect.5).

3.3 Methods to Represent IoT Network

While IoT networks become very sophisticated, visual analytics tools become
highly demanded. These tools enable developers and users to inspect and manip-
ulate the networks’ structure as well as to detect problems and invent opti-
mizations. State-of-the-art solutions for monitoring IoT networks unstructured
graphs [15] or 3D models of rooms and objects where IoT devices are located [16].

However, it’s not always easy enough to analyze unstructured graph or full 3D
environment. Sometimes more informative is a concise structured representation.
This is why we propose graphs of circular structure [24] to represent IoT device
networks (see Sect. 7).

3.4 Scientific Visualization Tools

Previously, we analyzed state of the art of scientific visualization software includ-
ing capabilities of different popular stand-alone systems like TecPlot, Origin,
EasyPlot, IRIS Explorer, Surfer, Grapher, Voxler, Hesperus, ParaView, Avizo,
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etc. and scientific visualization libraries and frameworks like OpenDX, VTK,
Vizlt, ScientificVR, ete. [21]. These software solutions provide high-quality visu-
alization, a lot of different tools and useful functions, but have some drawbacks,
which may be crucial in some particular cases:

1. Standardization of input. Almost all popular SVS and libraries require input
data in particular standard formats and have no high-level tools for integra-
tion with arbitrary third-party data sources.

2. Inability of feedback. Usually there are no means to set up control over the
data source from the visualization system and the user can just view the data
but cannot steer the process of data generation.

3. Complexity of extending. Most of the SVS and libraries can be extended with
the new graphical capabilities by source code changing only. Extending and
tuning the SVS by plugins requires programming skills and is complicated for
the beginners.

4. Lack of portability. Popular visualization systems are implemented either for
desktop computers or mobile devices, not for both.

To tackle the above challenges, we propose the ontology-driven SVS SciVi [22]
(see Sect.4). Besides programmers, there are two types of SciVi users: ontology
engineers and casuals. The main goal of ontology engineers is to extend the SciVi
knowledge base and thereby provide new capabilities for casuals. We demon-
strated how we extended SciVi to create IoT-based exhibition of Dimetrodon
grandis. The casual users in this case are IoT device markers.

3.5 Modern Reconstruction of Dimetrodon Grandis

ToT-based solutions have big potential not only for Smart Systems like Smart
Home, but also for interactive exhibitions and installations suitable for museums,
scientific art shows, etc. To demonstrate this idea we created interactive exhibi-
tion of Dimetrodon grandis Romer and Price, 1940, early Permian synapsid lived
more than 290 million years ago.

According to the current paleontological knowledge, dimetrodon had a sail
on its back with a tight network of blood vessels. This sail served to effectively
heat the body by the sunrays. To demonstrate this concept in the interactive
way we created animated 3D model of dimetrodon using Blender 3D. We took
into account the latest reconstruction research results published by Hartman
[12], including sail shape, back curvature and high walk pose.

We uploaded this model to SVS SciVi and created IoT device that detects
light direction of real light sources and visualizes how dimetrodon rotates its sail
to the light rays (see Sect. 6).

4 Key Concepts of SVS SciVi

The detailed description of SVS SciVi including its architecture and key features
ensuring efficient and high-quality rendering on both desktop computers and
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mobile devices can be found in [22]. Its essential part is the knowledge base
containing 3 ontologies:

1. L that describes input/output (I/0O) statements of programming languages.
According to this ontology the regex-based parser is automatically generated,
which extracts the related structures of I/O data from the solver’s source code.
This mechanism is used to automate the process of integration of SciVi with
third-party solvers.

2. F that describes semantic filters used to optional preprocessing the data
before visualization. For example, the described filters can sort the data, clus-
ter them, reduce their amount according given criteria, perform mathematical
transformations, etc.

3. U that describes supported visual objects and graphical scenes. For example,
2D charts and 3D models are available.

Developer or knowledge engineer can add new filters, graphical objects and
scenes to SciVi by extending the ontologies F' and U without core’s source code
modification.

To define the internal SciVi rendering pipeline we use the data flow dia-
grams [13]. We developed the high-level graphical editor, which enables the easy
way to design data flow diagrams and thereby to describe the data retrieving,
transformation and rendering. This editor provides a palette of available filters,
graphical objects and scenes. The palette is automatically built according to
their descriptions in the ontologies F and U. User can add new diagram nodes
from this palette and connect their I/O sockets defining the flow of data. Start-
ing from the data source node, user can define the sequence of filters, connect
them with visual objects and finally compose the graphical scenes.

| Data Flow Editor | Server
Web Ul | Renderer
| AngularJS | jQuery | Bootstrap | | NGraphics |
| Django | | NFoundation |

Data Flow Thin Client Thick Client |
Editor :
ul Data Flow
Renderer Editor
| Anguaws | jauery | ul
| HTML 5/CSS | Renderer

| WebGL-Compatible Browser at K

Fig. 1. Stack of software used in SciVi server, thin and thick client

SVS SciVi uses a layered architecture to achieve needed abstraction level
from the platform it runs on. The stack of software used in SciVi is shown
in the Fig. 1. Thin client is written in JavaScript, thick client’s logic is almost
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entirely implemented in C++4 and server is based mainly on C++ and Python; its
Web interface is written in JavaScript. Server and thin client share the common
code of data flow editor based on AngularJS framework. Thick client has its
own data flow editor code to make it more efficient using native drawing API.
NFoundation and NGraphics libraries are written in C4++ (product of Perm IT-
company Nulana Ltd., one of the paper’s authors is affiliated with). It provides
abstraction layer from the operating system and OpenGL/Direct3D low-level
rendering API to enable server-side rendering if needed.

The renderers of client and server are highly configurable thanks to ontology
knowledge base, which includes the corresponding links to original and third-
party rendering libraries (for example, PixiJS, D3.js and Three.js in the thin
client, Qt charts and Assimp in the thick client, etc.).

5 Embedded Scientific Visualization Tools

The aim of this work is to provide self-service solutions for calibration and mon-
itoring of IoT devices by means of embedded scientific visualization tools. These
tools make it possible to implement “in situ visualization” [19] for IoT devices.
SciVi is capable to connect to arbitrary data source including different electronic
devices. The device maker has to set up the SciVi server as intermediate software
between the IoT devices and the visualization client (desktop computer, mobile
device or browser). This approach is flexible enough, but sometimes it must be
simplified for the sake of efficiency. For example, in the museum with interac-
tive stands, the visitor can use his/her mobile device to handle these stands and
get corresponding visualization. For this purpose, it’s necessary to connect to
the interactive stand via browser over WiFi or some similar HT'TP-compatible
technology and get the data displayed without any additional software. In the
other case, when some IoT device is used, it’s necessary to calibrate this device
and to visualize the data it produces for monitoring purposes. In the last case
the direct connection between mobile and IoT devices is preferable.

To achieve this, we propose original tools for automated firmware generation
for the IoT device taking into account its specifications. Firmware incorporates
both the program code of device logic (called “embedded host”), and the program
code of visualization Web-server (called “embedded server”). The thin client is
responsible for rendering. The embedded server enables thin client connections,
obtains the data from embedded host, transmits them to the client and receives
the control commands including the calibrating. The client performs scene ren-
dering and provides the calibration graphical user interface. The “traditional”
SciVi assumes that the visualization server is more powerful than the client and
specific data processing including some rendering steps can be performed on the
server side. But in the case of IoT device firmware the contrary is assumed: the
client device should perform all the processing and visualization, because the
server platform normally has limitation both in clock frequency and in mem-
ory. This firmware is generated by the SciVi server and can include as many
visualization routines, as the IoT device memory volume enables.



662 K. Ryabinin et al.

As mentioned above, previous version of SciVi contained three ontologies
in its knowledge base: L, F and U. To provide the automated generation, we
propose to extend the SciVi knowledge base with the ontology C. This ontology
describes different electronic components such as controllers, chips and sensors
as well as associated firmware code.

For example, in the Fig.2 the fragment of ontology C describing analog-to-
digital converter (ADC) of ESP8266 controller is shown. This popular WiFi-
compatible controller is widely used for IoT purposes [4]. The ontology C' is
used in the similar way as ontologies F and U: it supports the data flow diagram
editor’s functioning and is intended to provide the code fragments necessary for
firmware generation. All the four ontologies in SciVi knowledge base have the
common part that is a description of supported data types, so they all may be
used together at the same time.

—| Includes | | Controller | | Type |<—| int | |Output|
h
V —_— is_a

_ H H
ESP8266 <—| ADC |—>| I | { —»apatof

|:| value = instance_of |
| Setup l T { = has

—| Loop | esp8266.cpp| | C++ | |analogRead(A0)|

Code Mask Code Block 4—'

Fig. 2. Fragment of electronic components ontology from the SciVi knowledge base
(Color figure online)

The ontologies are represented in standard OWL format. Short code snippets
(one-line expressions) are stored directly in the ontology, for example, the call of
ADC “analogRead(A0)” in Fig. 2. Larger code blocks are saved in separated files,
for example, the firmware template “esp8266.cpp”. Code blocks can have masks
like “Includes”, “Functions”, “Setup” and “Loop” of “esp8266.cpp”, which are
filled automatically by related code during firmware generation. All of these code
fragments are stored in the code repository. F, U and C ontologies play the role
of its semantic index, while the data flow diagram defines the interconnections
between the different entities described by these ontologies.

The firmware generator is a part of SciVi server. It is written in Python and
executed on the basis of Django, see Fig. 1. Its input is data flow diagram and
the type of controller. The generator traverses the data flow diagram and gen-
erates the firmware code for chosen controller using the related code fragments
according to those parts of ontologies, which are referenced from the data flow
diagram nodes. Normally C++-based embedded host and embedded server are
created as well as JavaScript-based client. The client is then transmitted to the
user via HTTP and communicating with the server via WebSocket. In case of
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ESP8266 (see Fig.2) the *.ino file is generated (so-called “sketch”) which can
be uploaded to the ESP8266 with the help of Arduino IDE.

6 Evaluation

As a feature-reach use-case to evaluate the proposed approach we demonstrate
the creation of a light direction sensor based on ESP8266 controller. This sensor
needs feedback for calibration. It detects the average direction to an external
light source and uses it to direct the light on the virtual scene. The sensor
consists of 3 photo resistors VIT90N2 placed at the vertices of an equilateral
triangle. Minimal resistance of VT90N2 is reached when the light direction is
collinear with the normal n of its surface. The surfaces of resistors are oriented
to be 45° to the ground. Thereby the normal vectors n1, no, ngs of the resistors’
surfaces build the basis of the vector space. In this space the direction from the
sensor to the light source can be expressed as I = uyn, + usns + uzng, where
uy, Uz, ug are the quotients proportional to the voltage on the corresponding
photo resistors. Data flow diagram of the light direction sensor is shown in the
Fig. 3.

3D Model

transform

direction
visual

Direction
Calibrator
direction

Fig. 3. Data flow diagram for light direction sensor

The ESP8266 controller has only one 10-bit ADC channel depicted on the
diagram by “ADC” node with single output. This is why logical demultiplexor
(DMX) is used to separate signals from the photo resistors. It corresponds to the
analog multiplexor 74HC4051 in the device schematics. The theoretical range
of the values obtained from ADC is [0;1023], however in practice the voltage
measured on the resistors does not accurately match that range having some
“padding” from the lower and upper boundary. To compensate this, cutting
should be performed. The nodes called “Map” cut off their input values according
to the “from” and “to” inputs and map them to [0; 1]. The cutting values should
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be calibrated as they depend on the photo resistors and on the ambient lighting
conditions.

The mapped values are then assembled into 3-dimensional vector using node
“Vec3d”, which is multiplied by the 4 x 4 matrix using node “Mul” to match the
virtual scene’s basis and the actual orientation of the sensor. To perform multi-
plication, vector is extended by w = 1 and then trimmed back to 3 components.
The matrix used as input for the “Mul” node contains rotation and should be
calibrated.

The direction of the vector assembled is inverted by the node “Invert” to get
the light direction. The result is used to direct the virtual light source depicted
with the node “Light”, which is then added to the graphical scene. 3D model
with sphere as a mesh is added to reflect the light.

To enable device calibration there is special graphical object “Calibrator”,
which takes the light direction as input and produces corresponding visual object
as output for related graphical scene. Calibrator renders coordinate axes and
explicitly visualizes the vector of light direction as an arrow in the scene space.
It also enables user to rotate the coordinate system and therefore change the
rotation matrix for the basis, as well as provides graphical interface to change
the ranges for 3 mappings of values obtained from ADC. The output of the
calibrator is connected to the “Mul” and “Map” nodes, building the cycle in the
data flow diagram. While traditional data flow diagrams are acyclic, we need to
support feedback to enable calibration. To keep the diagram clean and readable
(as well as planar in terms of graph theory) we indicate feedback links with the
special numbered markers (see Fig. 3) and not by arcs.

The two “Scene” nodes represent two different graphical scenes, which can be
accessed by different URLSs determined in the nodes’ settings. Switching between
these two scenes, user can calibrate the device and view the actual lighting sim-
ulation. However, this means the calibration values should be stored when cal-
ibrator is shown and reused when the 3D model is rendered. To achieve this,
we departed from the traditional data flow principal of “freedom from side-
effects” [13] and implemented feedback via global variables. While this breaks
a traditional data flow concept, it ensures more flexibility and enables easy and
readable representation of calibration actions. We still call the result diagram
“data flow”, because it still represents the path of data through the preprocess-
ing and rendering pipeline. With current enhancements the pipeline has global
mutable state, which can be changed by the nodes in runtime enabling the cali-
bration capabilities.

We used the developed device in the interdisciplinary educational project
organized by the Museum of Permian Antiquities. The project is designed mainly
for middle and senior schoolchildren. Its idea is to create an interactive exhibition
of Dimetrodon grandis mentioned in Sect. 3.5.

During the educational lesson the attending schoolchildren assemble the light
direction sensor based on ESP8266 controller and create the logic of its firmware
as a data flow diagram in SciVi. The idea is to tie the angular position of
dimetrodon 3D model to the light direction. Next, SciVi generates the firmware
code and the attendees calibrate the device they created. As a result, the ren-
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dered dimetrodon automatically moves its body to keep the sail nearly perpen-
dicular to the light direction. The aim of this educational project is to present the
modern paleontological knowledge to the schoolchildren in a game form as well as
to show the alloy of paleontology, biology, physics, robotics and computer science.

We used skeletal animation supported by Three.js for scientifically accurate
rendering of the dimetrodon. To ensure flexibility and low latency of data trans-
mission the communication between client and embedded server based on HTTP
and WebSocket is used.

7 Graph-Based Visualization of IoT Network

Perm Regional Museum has many branches including historical and paleonto-
logical ones, which are territorially distributed. Going further with the idea of
ToT-based interactive exhibitions we plan to build the common environment
across different branches. The result network may have complex topology estab-
lishing connections not only inside single museum branch over local network, but
also between different branches over the Internet. In this case the visual analysis
of the network would be needed.

We propose new clear and concise visual model named SciVi::CGraph that
accelerates a common understanding of the huge amount of data obtained from
distributed IoT networks as well as networks structure. SciVi::CGraph is based
on the traditional circle graph [1]. Compared to circle graph SciVi::CGraph
has multi-level adaptable ring scale around the graph. This scale enables to
demonstrate the hierarchical grouping of data, which is adequate for multidi-
mensional data representation. We have used SciVi::CGraph as a visual model
in a real-world project to explore the Machine Learning results of social net-
work processing within a remit of the project titled “Socio-Cognitive Modeling
of Social Networks Users Verbal and Non-Verbal Behavior Based on Machine
Learning and Geoinformation Technologies”. The research results of this project
have proved that suggested model is very useful for visual analytics goals and
enables to evaluate different data processing algorithms. The reported study is
supported by Ministry of Education and Science of the Russian Federation, State
Assignment No. 34.1505.2017/PCh (Research Project of Perm State University,
2017-2019).

In a context of designing a Smart Museum [5] SciVi::CGraph can be used
to visualize the results of IoT networks monitoring including museum visitors
activity monitoring. In this case the suggested model shows the data with respect
of the distributed IoT network structure. The devices are visualized taking into
account their location, so neighbor devices are grouped together in the graph.
Figure4 demonstrates the distributed IoT network structure. The connections
are represented by quadratic parabolas. The traffic volume is mapped to the
thicknesses of the graph arcs. The kind of devices such as sensor, display, actu-
ator, etc. is mapped to the color of graph nodes. The power consumption of
devices is shown by the histogram drawn as nodes’ background. The location
hierarchy (halls inside buildings) is represented by the ring scale around the
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graph. Support of this kind of visualization in SVS SciVi required the expansion
of the ontology U.

guilding .

Building *

Fig. 4. SciVi::CGraph representation of distributed IoT network structure (Color figure
online)

8 Conclusion

In this paper we describe the new version of adaptive SVS SciVi (v3.0) enriched
with the high-level features enabling firmware generation for IoT devices. In the
context of SVS, IoT devices are treated as solvers generating data to be visu-
alized. The new features as all the previous extensions are added to SciVi in
a uniform way by means of ontology-based engineering methods. For this, we
extended the SciVi ontological knowledge base with the ontology of electronic
components that describes different controllers, sensors and chips and related
program resources needed to generate the firmware. This ontology together
with ontologies of semantic filters, visual objects and graphical scenes allows
the device makers to build data flow diagrams, which describe internal logic of
IoT device behavior as well as the calibration and monitoring algorithms.

Currently the calibration is implemented via feedback functionality. The user
can tune the device manually according personal needs by sending related con-
trol commands while observing the visual representation of device data. But in
general the knowledge-driven approach to semantic filtering enables to define
automatic calibration algorithms, for example, drift compensation function. To
do this within SciVi it is enough to add to ontology knowledge base the corre-
sponding semantic filter that will be automatically applied to raw data obtained
from the device.
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Upgrade of SciVi knowledge base allows this SVS to play a new role as visual

environment for IoT device programming. The paper highlights the testing of
the SciVi 3.0 new features by an example of creating the Dimetrodon grandis
interactive exhibition.

In the future, we plan to build more complex Smart Museum exhibitions

using the interconnected IoT devices. To be able to visually inspect distributed
IoT networks we propose the new kind of concise visual representation based
on circular graph. Also we plan to enrich the IoT ecosystem with augmented
reality (AR) capabilities, for example, to generate ontology-based AR-assistant
that helps assembling complex IoT devices or networks.
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