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Abstract—Point cloud is widely used in various applications 
like 3D geographical information system (GIS), cultural heritage 
preservation, urban planning, etc. Most of these applications 
require interactive visualization of massive point cloud, which is 
challenging since their sizes are usually very large. This paper 
presents a method to construct a hierarchical data structure for 
point cloud data organization and real-time rendering, with an 
emphasis on speeding up the construction processing. The overall 
pipeline consists of the following three steps: first, the spatial 
extent of the whole dataset is divided into nested blocks; second, 
data in each block is reorganized using a octree based on random 
subsampling in a parallel fashion; finally, octree of all blocks are 
merged into a consistent hierarchy. The effectiveness and 
efficiency of the above approach was demonstrated by applying it 
to a set of point clouds of varying sizes reconstructed using 
photogrammetry pipeline.
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I. INTRODUCTION

Modern remote sensing techniques such as laser scanning 
and photogrammetry facilitate the acquisition of huge amounts 
of highly accurate 3D point cloud data. Such data has been 
widely used in a variety of applications, like 3D geographical
information system (GIS), cultural heritage preservation, urban 
planning, etc. Usually, efficient visualization of such data is 
desirable since users need to explore and inspect the scene 
interactively, which poses challenge in practice due to the large 
sizes of point cloud dataset. Compared with mesh representation,
more data is needed for point cloud to represent the same 
geometry. Therefore, another straightforward option is to 
convert point clouds into meshes and organize them using level 
of detail (LOD) algorithms for visualization. However, mesh 
reconstruction can be time consuming and costly for large point 
cloud data. More importantly, such operation may cause loss of 
information due to the substantially lower resolution of 
triangulated meshes.

Generally, the visualization of massive dataset is difficult 
since the size of data can easily exceed the main memory of 
computer. Even in the case the whole dataset can be loaded into 
the main memory, display the data with multiple attributes (e.g., 
position, normal, color, etc.) requires huge computational
resources, thus visualization of such data at interactive frame
rates on a personal computer is not possible for large dataset. In 
both cases, data organization and scheduling need to be handled 

carefully. As for point cloud data, in order to avoid decreasing 
point density (i.e., subsampling the data) or showing only a 
small portion of the whole dataset at once, it is essential to 
reorganize the original dataset with a multi-resolution data
structure.

II. RELATED WORK

The first pipeline for rendering large scale point clouds do 
not fit in main memory is called Qsplat [1], which builds a multi-
level point-per-node data structure based on point-sampling 
meshes. This solution involves several data preprocessing such 
as normal vectors computation. Layered Point Clouds (LPC) [2]
makes the assumption that point data is uniformly sampled and 
stores a set of points in each node. The visualization 
performance of LPC is accelerated using graphics processing 
unit (GPU). Another point cloud rendering method named 
Instant Points [3] does not depend on any sampling distribution 
or involve any pre-processing like normal computations. This 
approach uses an octree data structure in which the hierarchical 
nodes also contain multiple points. Besides octree data structure, 
some other data structures are also investigated in the literature, 
e.g., Goswani et al. [4] propose a different data structure using 
multi-way (balanced) kd-tree.

From the point view of implementation, even though some 
of the previous point cloud rendering solutions are very efficient, 
most of them are desktop-based systems. However, the rising 
popularity of WebGL and the availability of cloud computing or 
storage resources are changing the way in which point cloud 
data are consumed [5]. In fact, a few years ago point cloud 
visualization was limited to desktop-based solutions, but after 
the introduction of WebGL web renderers have become more 
and more popular. One of them is Potree [6] which uses a multi-
resolution octree data structure to deal with large datasets. The 
data structure used in Potree is constructed in a preprocessing
stage. The computation required to create the multi-resolution 
octree data structure is not optimized, which limits the usability 
for massive datasets.

In this paper we present a solution for speeding up the 
creation of point cloud hierarchy by using a divide-and-conquer 
pipeline, which splits the spatial extent of the whole dataset into 
smaller nested blocks that can run in parallel and can be easily 
combined into a consistent hierarchy with little additional file 
operation overhead. Moreover, a random subsampling strategy 
is employed to accelerate the creation of octree for each block.
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III. METHOD 

In this section, we present details on the construction of point 
cloud hierarchy and how it is used in the rendering stage.

A. Randomized point cloud hierarchy construction
The basic data structure used in this paper is a multi-

resolution octree, which is similar to the data structure used in 
Potree. Within this data structure, the original point cloud is 
subsampled without adding any new points to the dataset, thus 
it requires no additional disk space and enables operations like 
point selection and measurements on the original data at any 
level. Specifically, a variation of the modifiable nested octree 
(MNO) [7] structure combined with random subsampling is 
used in this paper, resulting in an efficient and flexible point 
cloud hierarchy. Since each point of the original dataset is 
assigned to exactly one octree node, combining all the points in 
all nodes returns the original dataset. An illustration of the 
hierarchy structure is shown in Fig. 1.

Figure 1. A three-level dense point cloud hierarchy.

The resolution of a node is defined by the number of points 
in a node, which in practice is specified by a minimal distance 
threshold Ds between points, iteratively decreases by half for a
lower level. A smaller Ds leads to a higher amount of points in 
each node, a lower number of nodes overall, and a shallower tree 

depth. The optimal value of the distance threshold depends on 
the performance of hardware, like CPU and GPU. In this work, 
Ds is fixed to Cs/128, where Cs is the corresponding size of the 
bounding box for each node. In order to generate as much as 
possible uniformly spaced subsamples while satisfying the 
constraint that the distance between any two points is not smaller
than Ds, we use a cube-level random subsampling strategy for 
simplification and speedup considerations. In particular, each 
node is divided into smaller cubes of size Ds for each node, then 
a point within the cube is randomly chose to store in the node.
The resulting data shows visually pleasing patterns and it also 
provides good coverage with a certain number of points. A 2D 
illustration of the above operation is shown in Fig. 2, where the 
dots in (a) and (b) indicate the locations of the original and 
subsampled points, respectively

Figure 2. 2D illustration of cube-level random subsampling.

While the above reorganization algorithm is simple to 
implement and fast enough for middle scale point clouds, such 
preprocessing can be time consuming for massive datasets. To 
this end, this work uses a divide-and-conquer approach to speed 
up the construction of point cloud hierarchy. As illustrated in Fig.
3, the processing consists of the following three steps. First, the
spatial extent of the whole hierarchy is computed and a tiling 
operation is performed to generate nested spatial extent of the 
hierarchy. Next, a set of independent task is generated according 
to the spatial hierarchy and the number of available 
computational threads. All the tasks are executed in parallel with 
the aforementioned octree construction and subsampling
algorithms. Finally, the different octrees generated from the 
various independent tasks are merged into a single consistent 
one. This merging operation is fast since it only involves moving 
and combining files and modifying indexing information.

Figure 3. 2D illustration of parallel point cloud hierarchy construction. See text for details.
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B. Realtime rendering
Aiming at efficient real-time rendering of large point cloud 

datasets, dynamic point cloud scheduling based on the generated 
octree structure is utilized (an illustration is shown in Fig. 4). In 
particular, nodes that are outside the visible region are excluded 
from the rendering list with the so-called view-frustum culling 
technique and visible nodes with different LOD according to 
their distances to the viewpoint are rendered jointly. The LOD
in a region is equal to the level of the highest-level node therein. 
LOD constraints ensure that nodes closer to the virtual camera 
are favoured over nodes that are further away.

Figure 4. View-frustum culling and node selection.

In practice, the nodes that should be rendered are determined 
by an hierarchy traverse operation, which is done in a screen-
projected-size order. The largest node on screen is visited first, 
then the second largest, and so on. The projected size is obtained 
as a function of the field of view (FOV) V, the distance ݀ from 
the viewpoint to the center of the node, the node’s bounding 
sphere radius ܴ௕௕, and the height of the screen ௦௖ܪ in pixels. The 
projected size Sn of the node is inversely proportional to the 
distance. Formally, it can be calculated as follows:ܵ௡ = ௦௖ܴ௕௕2ܪ ݀ × tan ቀ2ܸቁ.
A limit on the maximum number of points loaded and rendered 
for each frame can be set to accommodate for hardware of 
different performance.

IV. EXPERIMENTS

In order to evaluate the performance of the approach 
presented in this paper, we implemented the hierarchy 
construction method in C and point cloud rendering system 
based on WebGL, and carried out both qualitative and 
quantitative experiments. The operation system for our test
laptop is Ubuntu 16.04, and it is equipped with an Intel(R) 
Core(TM) i7-7700HQ CPU at 2.80 GHz (with 4 cores and 8 
threads), a NVIDIA GeForce GTX 1060 GPU, and 16GB
physical memory.

The point cloud datasets we used is obtained using 
photogrammetry method. In particular, we have downloaded a
publicly available quarry image dataset (https://s3.amazonaws.
com/mics.pix4d.com/example_datasets/example_quarry_2.0.zi
p) which consists of 347 high resolution aerial images which 
served as the input of photogrammetry point cloud generation.

The popular bundler [8] and PMVS [9] algorithms were used to 
perform structure from motion (SfM) and multi-view stereo 
tasks, respectively. The raw output of PMVS is a set of dense 
point cloud, which contains outliers and holes. To produce more 
visually pleasing point clouds, the raw point clouds are
converted into a textured mesh model using surface 
reconstruction method, and then sampled at different density 
scales to create a set of different size point cloud datasets. Fig. 5
shows two sample images of the quarry image dataset and the 
result of SfM including the sparse scene structure and 127 out of 
the 347 camera locations. Table 1 lists the detailed information 
of generated point cloud datasets for our experiments.

Figure 5. (a) Two sample images from the quarry image 
dataset used for point cloud reconstruction and (b) the locations 
of 127 images calculated using SfM method.

Table 1. Datasets used in our experiments.

Point Cloud Dataset Original File 
Size (MB) Number of Points

Quarry-10K 0.16 11,088

Quarry-100K 1.60 109,672

Quarry-1M 16.50 1,100,095

Quarry-10M 165.00 10,999,760

Quarry-100M 1650.00 100,219,810

In the following, we compare the efficiency of the method 
described in this paper and that of the one used by Potree. The 
experimental results on the five point cloud datasets are shown 
in Fig. 6, from which we can see that our method runs 
consistently faster than the comparative method, with an overall 
speedup ranging from 5 to 7 times. In particular, for dataset 
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Quarry-100M, the preprocessing time for Potree is about 200
seconds while ours takes only 40 seconds, which means our 
method processes about 2,505,495 points per second. It is 
noteworthy that the above performance is obtained on a 4-core 
CPU and the efficiency of our method can be improved even 
further for a more powerful computer with more cores and 
threads.

As for online rendering, all the tested datasets achieve a 
frame rate higher than 50fps. Some visualization results are 
shown in Fig. 7, where the figure on the second row is a global 
view of the point cloud dataset Quarry-100M and the figures on 
the first row are views for the three local regions A, B, and C 
highlighted by colored polygons.

The above experiments demonstrate that our method is 
effective and efficient for reorganization and interactive 
visualization of massive point clouds.

Figure 6. Comparison of processing time for point cloud 
reorganization.

Figure 7. Visualization results of point cloud dataset Quarry-100M on different level of details. See text for details.
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V. CONCLUSION

This paper presents a method to efficiently construct a point 
cloud hierarchy for large scale point cloud visualization. The 
processing of data hierarchy construction is accelerated by a fast
cube-tile random point cloud subsampling algorithm and a 
divide-and-conquer scheme which enables parallel data 
processing. Qualitative and quantitative experimental results on 
several point clouds demonstrate the effectiveness and 
efficiency of the proposed approach. As for future work, we plan 
to extend our method to city or globe scale dataset and 
investigate its performance.
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