2019 IEEE Fourth International Conference on Data Science in Cyberspace (DSC)

Efficient Randomized Hierarchy Construction for
Interactive Visualization of Large Scale Point Clouds

Lai Kang
College of Systems Engineering
National University of Defense

Jie Jiang
College of Systems Engineering
National University of Defense

Technolo gy Technology
Char}gsha, China Changsha, China
kanglail23@yeah.net jiejiang@126.com

Abstract—Point cloud is widely used in various applications
like 3D geographical information system (GIS), cultural heritage
preservation, urban planning, etc. Most of these applications
require interactive visualization of massive point cloud, which is
challenging since their sizes are usually very large. This paper
presents a method to construct a hierarchical data structure for
point cloud data organization and real-time rendering, with an
emphasis on speeding up the construction processing. The overall
pipeline consists of the following three steps: first, the spatial
extent of the whole dataset is divided into nested blocks; second,
data in each block is reorganized using a octree based on random
subsampling in a parallel fashion; finally, octree of all blocks are
merged into a consistent hierarchy. The effectiveness and
efficiency of the above approach was demonstrated by applying it
to a set of point clouds of varying sizes reconstructed using
photogrammetry pipeline.

Keywords—point cloud, large scale, hierarchy, visualization,
photogrammetry

L.

Modern remote sensing techniques such as laser scanning
and photogrammetry facilitate the acquisition of huge amounts
of highly accurate 3D point cloud data. Such data has been
widely used in a variety of applications, like 3D geographical
information system (GIS), cultural heritage preservation, urban
planning, etc. Usually, efficient visualization of such data is
desirable since users need to explore and inspect the scene
interactively, which poses challenge in practice due to the large
sizes of point cloud dataset. Compared with mesh representation,
more data is needed for point cloud to represent the same
geometry. Therefore, another straightforward option is to
convert point clouds into meshes and organize them using level
of detail (LOD) algorithms for visualization. However, mesh
reconstruction can be time consuming and costly for large point
cloud data. More importantly, such operation may cause loss of
information due to the substantially lower resolution of
triangulated meshes.

INTRODUCTION

Generally, the visualization of massive dataset is difficult
since the size of data can easily exceed the main memory of
computer. Even in the case the whole dataset can be loaded into
the main memory, display the data with multiple attributes (e.g.,
position, normal, color, etc.) requires huge computational
resources, thus visualization of such data at interactive frame
rates on a personal computer is not possible for large dataset. In
both cases, data organization and scheduling need to be handled

Yingmei Wei
College of Systems Engineering
National University of Defense

Yuxiang Xie
College of Systems Engineering
National University of Defense

Technology Technology
Changsha, China Changsha, China
weiyingmei@nudt.edu.cn yxxie@nudt.edu.cn

carefully. As for point cloud data, in order to avoid decreasing
point density (i.e., subsampling the data) or showing only a
small portion of the whole dataset at once, it is essential to
reorganize the original dataset with a multi-resolution data
structure.

I

The first pipeline for rendering large scale point clouds do
not fit in main memory is called Qsplat [1], which builds a multi-
level point-per-node data structure based on point-sampling
meshes. This solution involves several data preprocessing such
as normal vectors computation. Layered Point Clouds (LPC) [2]
makes the assumption that point data is uniformly sampled and
stores a set of points in each node. The visualization
performance of LPC is accelerated using graphics processing
unit (GPU). Another point cloud rendering method named
Instant Points [3] does not depend on any sampling distribution
or involve any pre-processing like normal computations. This
approach uses an octree data structure in which the hierarchical
nodes also contain multiple points. Besides octree data structure,
some other data structures are also investigated in the literature,
e.g., Goswani et al. [4] propose a different data structure using
multi-way (balanced) kd-tree.

RELATED WORK

From the point view of implementation, even though some
of the previous point cloud rendering solutions are very efficient,
most of them are desktop-based systems. However, the rising
popularity of WebGL and the availability of cloud computing or
storage resources are changing the way in which point cloud
data are consumed [5]. In fact, a few years ago point cloud
visualization was limited to desktop-based solutions, but after
the introduction of WebGL web renderers have become more
and more popular. One of them is Potree [6] which uses a multi-
resolution octree data structure to deal with large datasets. The
data structure used in Potree is constructed in a preprocessing
stage. The computation required to create the multi-resolution
octree data structure is not optimized, which limits the usability
for massive datasets.

In this paper we present a solution for speeding up the
creation of point cloud hierarchy by using a divide-and-conquer
pipeline, which splits the spatial extent of the whole dataset into
smaller nested blocks that can run in parallel and can be easily
combined into a consistent hierarchy with little additional file
operation overhead. Moreover, a random subsampling strategy
is employed to accelerate the creation of octree for each block.

978-1-7281-4528-0/19/$31.00 ©2019 IEEE
DOI 10.1109/DSC.2019.00096
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:52:46 UTC from IEEE Xplore. Restrictions apply.

593

111

In this section, we present details on the construction of point
cloud hierarchy and how it is used in the rendering stage.

METHOD

A. Randomized point cloud hierarchy construction

The basic data structure used in this paper is a multi-
resolution octree, which is similar to the data structure used in
Potree. Within this data structure, the original point cloud is
subsampled without adding any new points to the dataset, thus
it requires no additional disk space and enables operations like
point selection and measurements on the original data at any
level. Specifically, a variation of the modifiable nested octree
(MNO) [7] structure combined with random subsampling is
used in this paper, resulting in an efficient and flexible point
cloud hierarchy. Since each point of the original dataset is
assigned to exactly one octree node, combining all the points in
all nodes returns the original dataset. An illustration of the
hierarchy structure is shown in Fig. 1.

Level 0

top ‘
Level 1
bottom Level 2

Figure 1. A three-level dense point cloud hierarchy.

The resolution of a node is defined by the number of points
in a node, which in practice is specified by a minimal distance
threshold D, between points, iteratively decreases by half for a
lower level. A smaller Dy leads to a higher amount of points in
each node, a lower number of nodes overall, and a shallower tree

spatial extent calculation
and partition

e

sub-hierarchy construction

depth. The optimal value of the distance threshold depends on
the performance of hardware, like CPU and GPU. In this work,
Dy is fixed to Cy/128, where C; is the corresponding size of the
bounding box for each node. In order to generate as much as
possible uniformly spaced subsamples while satisfying the
constraint that the distance between any two points is not smaller
than D,, we use a cube-level random subsampling strategy for
simplification and speedup considerations. In particular, each
node is divided into smaller cubes of size D; for each node, then
a point within the cube is randomly chose to store in the node.
The resulting data shows visually pleasing patterns and it also
provides good coverage with a certain number of points. A 2D
illustration of the above operation is shown in Fig. 2, where the
dots in (a) and (b) indicate the locations of the original and
subsampled points, respectively

R 1

S o
S8 Ny
R R

(a) (b)
Figure 2. 2D illustration of cube-level random subsampling.

While the above reorganization algorithm is simple to
implement and fast enough for middle scale point clouds, such
preprocessing can be time consuming for massive datasets. To
this end, this work uses a divide-and-conquer approach to speed
up the construction of point cloud hierarchy. As illustrated in Fig.
3, the processing consists of the following three steps. First, the
spatial extent of the whole hierarchy is computed and a tiling
operation is performed to generate nested spatial extent of the
hierarchy. Next, a set of independent task is generated according
to the spatial hierarchy and the number of available
computational threads. All the tasks are executed in parallel with
the aforementioned octree construction and subsampling
algorithms. Finally, the different octrees generated from the
various independent tasks are merged into a single consistent
one. This merging operation is fast since it only involves moving
and combining files and modifying indexing information.

hierarchy merging

- 5
el - -
A a4

Figure 3. 2D illustration of parallel point cloud hierarchy construction. See text for details.

594

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:52:46 UTC from IEEE Xplore. Restrictions apply.

B. Realtime rendering

Aiming at efficient real-time rendering of large point cloud
datasets, dynamic point cloud scheduling based on the generated
octree structure is utilized (an illustration is shown in Fig. 4). In
particular, nodes that are outside the visible region are excluded
from the rendering list with the so-called view-frustum culling
technique and visible nodes with different LOD according to
their distances to the viewpoint are rendered jointly. The LOD
in a region is equal to the level of the highest-level node therein.
LOD constraints ensure that nodes closer to the virtual camera
are favoured over nodes that are further away.

—FOV

‘\\

|~ viewpoint

Figure 4. View-frustum culling and node selection.

In practice, the nodes that should be rendered are determined
by an hierarchy traverse operation, which is done in a screen-
projected-size order. The largest node on screen is visited first,
then the second largest, and so on. The projected size is obtained
as a function of the field of view (FOV) V, the distance d from
the viewpoint to the center of the node, the node’s bounding
sphere radius Ry, and the height of the screen H,, in pixels. The
projected size S, of the node is inversely proportional to the
distance. Formally, it can be calculated as follows:

HscRbb

- 2d X tan (%)

A limit on the maximum number of points loaded and rendered
for each frame can be set to accommodate for hardware of
different performance.

Sn

IV. EXPERIMENTS

In order to evaluate the performance of the approach
presented in this paper, we implemented the hierarchy
construction method in C and point cloud rendering system
based on WebGL, and carried out both qualitative and
quantitative experiments. The operation system for our test
laptop is Ubuntu 16.04, and it is equipped with an Intel(R)
Core(TM) i17-7700HQ CPU at 2.80 GHz (with 4 cores and 8
threads), a NVIDIA GeForce GTX 1060 GPU, and 16GB
physical memory.

The point cloud datasets we used is obtained using
photogrammetry method. In particular, we have downloaded a
publicly available quarry image dataset (https://s3.amazonaws.
com/mics.pix4d.com/example datasets/example quarry 2.0.zi
p) which consists of 347 high resolution aerial images which
served as the input of photogrammetry point cloud generation.

595

The popular bundler [8] and PMVS [9] algorithms were used to
perform structure from motion (SfM) and multi-view stereo
tasks, respectively. The raw output of PMVS is a set of dense
point cloud, which contains outliers and holes. To produce more
visually pleasing point clouds, the raw point clouds are
converted into a textured mesh model wusing surface
reconstruction method, and then sampled at different density
scales to create a set of different size point cloud datasets. Fig. 5
shows two sample images of the quarry image dataset and the
result of SfM including the sparse scene structure and 127 out of
the 347 camera locations. Table 1 lists the detailed information
of generated point cloud datasets for our experiments.

‘,a?
oy

s 8 ®a ®
8 f a a8 g“ 8
8 B BN m n’_ [
[‘z'“- ° J" a8 R
s'—,‘ﬂ . a-m a 8.8
.
L 0l e B R
6o SN T S
S i

(b)

Figure 5. (a) Two sample images from the quarry image
dataset used for point cloud reconstruction and (b) the locations
of 127 images calculated using SfM method.

Table 1. Datasets used in our experiments.

Point Cloud Dataset O;;fén(?dg;e Number of Points
Quarry-10K 0.16 11,088
Quarry-100K 1.60 109,672
Quarry-1M 16.50 1,100,095
Quarry-10M 165.00 10,999,760
Quarry-100M 1650.00 100,219,810

In the following, we compare the efficiency of the method
described in this paper and that of the one used by Potree. The
experimental results on the five point cloud datasets are shown
in Fig. 6, from which we can see that our method runs
consistently faster than the comparative method, with an overall
speedup ranging from 5 to 7 times. In particular, for dataset

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:52:46 UTC from IEEE Xplore. Restrictions apply.

Quarry-100M, the preprocessing time for Potree is about 200
seconds while ours takes only 40 seconds, which means our
method processes about 2,505,495 points per second. It is
noteworthy that the above performance is obtained on a 4-core
CPU and the efficiency of our method can be improved even
further for a more powerful computer with more cores and
threads.

As for online rendering, all the tested datasets achieve a
frame rate higher than 50fps. Some visualization results are
shown in Fig. 7, where the figure on the second row is a global
view of the point cloud dataset Quarry-100M and the figures on
the first row are views for the three local regions A, B, and C
highlighted by colored polygons.

The above experiments demonstrate that our method is
effective and efficient for reorganization and interactive
visualization of massive point clouds.

i Potree M Proposed

time (sec.) on log scale

Figure 6. Comparison of processing time for point cloud
reorganization.

Figure 7. Visualization results of point cloud dataset Quarry-100M on different level of details. See text for details.

596

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:52:46 UTC from IEEE Xplore. Restrictions apply.

V. CONCLUSION

This paper presents a method to efficiently construct a point
cloud hierarchy for large scale point cloud visualization. The
processing of data hierarchy construction is accelerated by a fast
cube-tile random point cloud subsampling algorithm and a
divide-and-conquer scheme which enables parallel data
processing. Qualitative and quantitative experimental results on
several point clouds demonstrate the effectiveness and
efficiency of the proposed approach. As for future work, we plan
to extend our method to city or globe scale dataset and
investigate its performance.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (NSFC) under Grant No. 61873274.

REFERENCES

[1] Rusinkiewicz, S. & Levoy, M. Qsplat: A multiresolution point rendering
system for large meshes. In Proceedings of the 27th Annual Conference
on Computer Graphics and Interactive Techniques, SIGGRAPH’00, 343—
352.

[2] Gobbetti, E. & Marton, F. Layered point clouds: A simple and efficient
multiresolution structure for distributing and rendering gigantic point-
sampled models. Comput. Graph. 28, 815-826 (2004).

[3] Wimmer, M. & Scheiblauer, C. Instant points: Fast rendering of
unprocessed point clouds. In Proceedings of the 3rd Eurographics / IEEE
VGTC Conference on Point-Based Graphics, SPBG’06, 129-137.

[4] Goswami, P., Zhang, Y., Pajarola, R. & Gobbetti, E. High quality
interactive rendering of massive point models using multi-way kd-trees.
In Proceedings Pacific Graphics Poster Papers (2010).

[5] Uitentuis, M. (eds.) Management of massive point cloud data: wet and
dry, Green Series, 9-15 (Nederlandse Commissie voor Geodesie,
2010).ows. Tech. Rep., GeoNext BV (2015).

[6] Potree. http://potree.org/ (accessed on April 10th, 2019)

[7] Claus Scheiblauer. Interactions with Gigantic Point Clouds. PhD thesis.
Vienna University of Technology, 2014.

[8] Noah Snavely, Steven M. Seitz, Richard Szeliski. Modeling the World
from Internet Photo Collections. International Journal of Computer
Vision, 2008, 80(2): 189-210.

[91 Y. Furukawa and J. Ponce. Accurate, Dense, and Robust Multiview
Stereopsis, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2010, 32(8): 1362-1376.

597

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 26,2024 at 11:52:46 UTC from IEEE Xplore. Restrictions apply.

